• Title/Summary/Keyword: Water and Heat Transport

Search Result 185, Processing Time 0.024 seconds

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Performance Characteristics of a Heat Pipe Having Water-Ethanol Mixture as Working Fluid for Evacuated Solar Collectors (물-에탄올 혼합물을 작동유체로 하는 진공관형 태양열 집열기용 히트파이프의 작동특성)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.78-84
    • /
    • 2008
  • Heat pipes are considered to be promising candidates to enhance the heat transport capability of evacuated solar collectors in a wide temperature range. The working fluid must be selected properly considering various operating conditions of heat pipes for medium-high temperature range to avoid dry-out, local overheating, and frozen failure. The advantage of using binary mixture as heat pipe working fluid is that it can extend operating temperature range of the system as it can overcome operating temperature limit of a single fluid. Various operating temperature ranges were imposed in the experiments to simulate the actual operation of solar collectors using water-ethanol binary mixture. Tests were conducted for the coolant temperature range of -10$^{\circ}C$ to 120$^{\circ}C$, and mixing ratio range was from 0 to 1 based on mass fraction.

A Study on the Miniature Loop Heat Pipe with Non-inverted Meniscus type Capillary Structure (Non-inverted Meniscus식 모세관 구조물을 이용한 소형 루프히트파이프에 관한 실험적 연구)

  • Chung, Won-Bok;Park, Soo-Yong;Doctarau, Viachaslau-V.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2142-2147
    • /
    • 2007
  • Experimental study was conducted to evaluate the performance of a miniature loop heat pipe (MLHP) with non-inverted meniscus type capillary structure. All parts of MLHP in this study were made of copper including the capillary structure and the distilled water was used as a working fluid of MLHP. The outer diameter of evaporator was 9 mm and its length was 119 mm. The effective pore size of the capillary structure was 30 micron and its porosity was 60%. The vapor transport line, the liquid transport line and the condenser were consisted of single 4.0 mm copper tube. The distance between the evaporator and the condenser region was 200 mm and the length of the loop was 969 mm. This MLHP was operated successfully at any orientation but the gravity highly influenced the thermal performance of the MLHP. The maximum thermal load was 130 watts at the bottom heat mode and the 20 watts at the top heat mode.

  • PDF

Influence of NCG Charging Mass on the Thermal Characteristics of Variable Conductance Heat Pipe with Screen Mesh Wick (스크린 메쉬형 가변전열 히트파이프에서 NCG양에 따른 작동특성 변화)

  • Suh, J.S.;Park, Y.S.;Kang, C.H.;Chung, K.T.;Park, K.H.;Lee, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1400-1405
    • /
    • 2004
  • Experimental study is performed to investigate the effect of heat load and operating temperature on the thermal performance of a heat pipe with screen mesh wick. The heat pipe was designed in 200 screen meshes, 500mm length and 12.7mm O.D tube of copper, water as working fluid(4.8g) and nitrogen as non-condensible gas(NCG). The heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of axial wall temperature distribution is presented for heat transport capacity, the temperature of cooling water of condenser, inclination angle, and operating temperature. For the results from this study, it is found that, for the same charging mass of working fluid, the initial operating temperature and the overall wall temperatures of heat pipe are higher for NCG charging mass of $5.0{\times}10^{-6}kg$ and $3.4{\times}10^{-6}kg$, than that of $1.0{\times}10^{-6}kg$.

  • PDF

Operational Characteristics of Pulsating Heat Pipes for the Application to the Heat Dissipation of LED Lighting (LED 조명 방열 환경에서 진동형 히트파이프의 작동 특성)

  • Bang, Kwang-Hyun;Kim, Hyoung-Tak;Park, Hae-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.830-836
    • /
    • 2012
  • An efficient cooling system is essential for the electronic packaging such as a high-luminance LED lighting. A special heat transport technology, Pulsating Heat Pipe (PHP), can be applied to the cooling of LED lighting. In this paper, the operational characteristics of the PHP in the imposed thermal boundary conditions of LED lighting were experimentally investigated. The experimental PHP was made of copper tubes of internal diameter of 2.1 mm. The working fluids of ethanol, FC-72, water, acetone and R-123 were chosen for comparison. The results showed that an optimum range of charging ratio exists for high cooling performance; 50% for most of the fluids. Among the five working fluids, water showed the highest heat transfer rate of 260 W. Two distinguished characteristics of pulsating direction were identified. It is also identified that high vapor pressure gradient is one of key parameters for better heat transfer performance.

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

Effects of Working Fluid Filling Ratio and Heat flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon (루프 써모사이폰에서 작동유체 충액률과 열유속이 열전달계수의 상관식에 미치는 영향)

  • 장기창;이기우;이영수;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.462-473
    • /
    • 2001
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying th loop thermosyphon to heat exchanger design. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in th range of 13~78kW/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\p$\pm$5% and\;\pm20$% respectively.

  • PDF

Performance Test and Development of the Composite Heat Pipe with Rotating and Static Heat Pipe (회전.비회전 복합 히트파이프 개발과 성능 시험)

  • Lee, Y.S.;Jang, Y.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this research is to study the charateristics and manufacture of a composite heat pipe system with rotational and static pipe. A composite heat pipe system were tested to obtain the relationship between the expansion injector and auxiliary expansion for the motion of the working fluid by the experimental results. In addition the heat transport characteristics were found based on wall temperature of rotor, expansion injector, storage tank and vapor temperature. Water is used as working fluid of heat pipes. As the results of experiments, the composite heat pipe was operated for long times, 10 hour above with various rotational speed in performance. There were a few unexpected data by the capillary pumped loop at small working fluid, but as a whole the testing was successful.

  • PDF

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

Study on Optimization of Design and Operation for Groundwater Heat Pump System Considering Ground and Groundwater Condition (지반.지하수 조건을 고려한 최적의 지하수 이용 공조 시스템 선정에 관한 연구)

  • Nam, Yu-Jin;Ryozo, Ooka;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.731-736
    • /
    • 2006
  • Groundwater heat pump (GWHP) system has been expected to achieve the higher coefficient of performance (COP) and more energy-saving than the conventional air-source heat pump (ASHP) system. Its performance significantly depends on the characteristics of groundwater and the underground thermal properties. Furthermore, there is a large difference of COP in utilizing groundwater between as a heat resource and as a thermal storage medium. For properties of groundwater there is suitable utilizing system. However, many of GWHP systems have not been considered sufficiently such properties. This research describes optimization of GWHP system according to the properties of groundwater based on 3D numerical heat and water transport simulation.

  • PDF