• Title/Summary/Keyword: Water Vapor Pressure

Search Result 422, Processing Time 0.025 seconds

A Study on the Effects of System Pressure on Heat and Mass Transfer Rates of an Air Cooler

  • Jung, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.696-702
    • /
    • 2002
  • In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychrometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements.

The Correlation Study on the Desorption Enthalpy Changes of Sun- Cured Tobacco (향끽미종 잎담배의 탈착 엔탈피 변화에 관한 상관성 연구)

  • 최승찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.6 no.1
    • /
    • pp.33-37
    • /
    • 1984
  • The net enthalpy changes for the water desorption of sun-cured tobacco have been studied. In order to compare the values of net enthalpy changes for the samples at the same moisture contents, correlation analyses have been performed. The results are summarizing as followings : 1 . As temperature and water vapor pressure increased, equlibrium moisture content were approaching to the saturated vapor pressure of water. 2. The values of 1nP against the reciprocal of absolute temperature were linear for the water desorption of samples. 3. Multiple regression was analyzed to calculate the values of 1nP at the same moisture content. The significance of $x^2$-test for the multiple regression was 0.5%. 4. The values of net enthalpy changes for Basma were greater than those of Sohyang at the same moisture content.

  • PDF

Comparative Water Relations of Two Vitis vinifera Cultivars, Riesling and Chardonnay

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.223-226
    • /
    • 2001
  • The leaf water relations and photosynthetic rate during acute soil drying were compared in potgrown grapevine cultivars, Vitis vinifera cv. Chardonnay and V. vinifera cv. Riesling. Leaf water potential in Riesling decreased significantly from day 2 after water had been withheld, while in Chardonnay leaf water potential for the water-stressed plants was almost identical with that in well watered plants during the first 4 days. Higher stomatal conductance and photosynthetic rate in Chardonnay than Riesling were observed until day 3 after withholding water. Photosynthetic rate in water-stressed Chardonnay was not different from that in control plants until day 3 after withholding water, while that in water-stressed Riesling was reduced markedly from day 2. In Riesling, osmotic potential at turgor loss point was not changed irrespective of watering conditions. However, in Chardonnay osmotic potential at turgor loss point decreased more in the water stressed conditions than in well watered conditions. The osmotic adjustment in Chardonnay under water stress conditions must contribute to the maintenance of higher stomatal conductance and photosynthetic rate than those in Riesling for a significant period of the drying process. Though difference in stomatal conductance between the two cultivars was shown in the process of soil drying, stomatal conductance of both cultivars responded to vapor pressure difference between leaf and ambient air, rather than soil water status and leaf water potential.

  • PDF

Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump (원심펌프의 시동 및 정지에 따른 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

Evaluation on solubility and vapor pressure of H2O/(LiBr+CaCl2) solution as a working fluid (H2O/(LiBr+CaCl2) 3성분계 흡수용액의 용해도 및 증기압 특성 평가)

  • No, S.Y.;Jang, Y.H.;Koo, K.K.;Jeong, S.;Kim, Y.W.;Kim, S.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.163-170
    • /
    • 1997
  • Solubility on $(LiBr+CaCl_2)$ in water has been measured systematically and compared with those of pure LiBr. It has been observed that there exists optimum value of $CaCl_2(LiBr+CaCl_2)$ in solubility when total$(LiBr+CaCl_2)$ concentration is higher than 57wt%. As total concentration increases up to 65wt%, it is found that the optimum value also increases monotonically. From the experimental results, a master plot has been constructed, with which optimum ratio of LiBr to $CaCl_2$ can be found in terms of total concentration. Vapor pressure of $H_2O/(LiBr+CaCl_2)$ solution with optimum contents of $CaCl_2$ has been observed to be changed negligibly at relatiely low temperature. However, as temperature increases, it is found that increasement in vapor pressure is significant.

  • PDF

Hydrothermal Syntheses of Hydrous Minerals, Brucite, Xonotlite, Talc, Tremolite, and Antigorite (수산화광물(水酸化鑛物)인 수골석(水滑石), Xonotlite, 활석(滑石), 투각섬석(透角閃石) 및 Antigorite의 열수합성(熱水合成))

  • Park, Hong Bong
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.65-68
    • /
    • 1980
  • Dolomite and quartz, starting materials, were mixed by the mole ratio of dolomite versus quartz with 1 : 0, 1 : 1, and 2 : 1, and of which was heated under saturated water vapor pressure of $20kg/cm^2(211.4^{\circ}C)$, $80kg/cm^2(293.6/C)$ and $120kg/cm^2(323.1^{\circ}C)$, respectively, during 20 hours. The results of the hydrothermal syntheses are as follows: 1) calcite crystals were formed at all cases of the reation 2) brucite crystals were formed when dolomite was heated under the saturated vapor pressure of $80kg/cm^2$ during 20 hours. 3) talc, tremolite, xonotlite, and antigorite were formed under saturated vapor pressure of $80kg/cm^2$ by 20 hours reaction.

  • PDF

Moist Air Density Calculation for Air Condition (공기 상태량에 대한 습공기 밀도 계산)

  • Kim, Jong-Woo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.105-111
    • /
    • 2014
  • Generally the lower part of the Earth's atmosphere, which is 20km above the ground, is called "air." The composition of this area is almost consistent consisting of nitrogen, oxygen, and other gases. Air density refers to the mass per unit volume of earth atmosphere. Though air is made of the mixed gases in a constant composition, the water vapor is one of the very changeable components. The density of moist air is lower than the dry one at the same temperature and pressure. As the density varies according to the pressure and temperature, this paper attempts to explore the main factors in the air quantity calculation by examining first the density calculation process according to the air property, and second the relation between the actual and standard air flow.

Studies on Absorption and Desorption Wood - Difference of Absorption and Desorption Behavior of Wood - (목재의 흡방습에 관한 연구 - 수종에 의한 흡방습성의 차이 -)

  • Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.52-61
    • /
    • 1991
  • In this paper, the difference of the property of absorption and desorption for five species in semi-steady state are studied. The species used are listed in Table 1 and the dimension of specimen was $8\times8{\times}T$(Tangential direction)cm and tested in various conditions. A change of average moisture content with time were measured in each cycles. The results obtained are summarized as follows. When the relative humidity in air was maximum or minimum, the distribution of moisture In wood of all specimens were illustrated by exponential curves of decrease or increased from lace 10 center of wood. From the consideration of coefficient of decrease(C), the amount of moisture change of spruce was larger than the others. The pheonomenon was considered no relation to the specific gravity in air dry, but the wood structures. The velocity of the absorption and desorption for species decreased in the order spruce(Picea sitchensis) neodobam(Fagus crenata), solsong(Tsuga heterophylla), meranti(Shorea sp.) and kaesoo(Cercidiphyllum japoicum). In case of constant temperature and water vapor pressure is changed. the amount of absorbed moisture was larger than that of constant water vapor pressure and temperature vaned. In this fact, it is considered that the property of sorption of wood is strongly influenced by vapor pressure gradient than temperature gradient.

  • PDF

Evaluation of Spalling Property and Water Vapor Pressure of Concrete with Heating Rate (가열 속도에 따른 콘크리트의 폭렬 특성 및 내부 수증기압력 평가)

  • Choe, Gyeong-Cheol;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Byung-Keun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • Spalling of concrete occurs due to vapor pressure ignited explosion, temperature difference across a section, and combination of these factors. Factors affecting spalling can be classified into internal and external factors such as material property and environmental condition, respectively, have to be considered to precisely understand spalling behavior. An external environmental factor such as differences in heating rate cause internal humidity cohesion and different vapor pressure behavior. Therefore, spalling property, vapor pressure and thermal strain property were measured from concrete with compressive strengths of 30 MPa, 50 MPa, 70 MPa, 90 MPa, and 110 MPa, applied with ISO-834 standard heating curve of $1^{\circ}C/min$ heating rate. The experimental results showed that spalling occurred when rapid heating condition was applied. Also, when concrete strength was higher, the more cross section loss from spalling occurred. Also, spalling property is influenced by first pressure cancellation effect of thermal expansion caused by vapor pressure and heating rates.

A Study on Thermodynamic Properties of Ethylene Gas Hydrate

  • Lim, Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.10-15
    • /
    • 2007
  • The gas hydrates are probably most sensitive to climate change since they are stable only under specific conditions of high pressure and low temperature. One of the main factors responsible for formation of gas hydrates is the saturation of the gases with water vapor. Quantitative phase equilibrium data and understanding of the roles of water component in the phase behavior of the heterogeneous water-hydrocarbon-hydrate mixture are of importance and of engineering value. In this study, the water content of ethylene gas in equilibrium with hydrate and water phases were analyzed by theoretical and experimental methods at temperatures between 274.15 up to 291.75 K and pressures between 593.99 to 8,443.18 kPa. The experimental and theoretical enhancement factors (EF) for the water content of ethylene gas and the fugacity coefficients of water and ethylene in gas phase were determined and compared with each other over the entire range of pressure carried out in this experiment. In order to get the theoretical enhancement factors, the modified Redlich-Kwong equation of state was used. The Peng-Robinson equations and modified Redlich-Kwong equations of state were used to get the fugacity coefficients for ethylene and water in the gas phase. The results predicted by both equations agree very well with the experimental values for the fugacity coefficients of the compressed ethylene gas containing small amount of water, whereas, those of water vapor do not in the ethylene rich gas at high temperature for hydrate formation locus.