• Title/Summary/Keyword: Water Vapor Pressure

Search Result 422, Processing Time 0.028 seconds

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation (양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절)

  • Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.

Technical Feasibility of Ethanol as a Fuel for Farm Diesel Engines (농용(農用) 디이젤 엔진 연료(燃料)로서의 에타놀 이용(利用)에 관(關)한 연구(硏究))

  • Ryu, Kwan Hee;Bae, Yeong Hwan;Yoo, Soo Nam
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1982
  • The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.

  • PDF

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

Hydrogen explosion effects at a containment building following a severe accident (중대사고시 수소폭발이 격납건물에 미치는 영향)

  • Ryu, Myeong-Rok;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • On March 11, 2011, a massive earthquake measuring 9.0 on the Richter scale and subsequent 10-.14 m waves struck the Fukushima Daiichi (FD) Nuclear Power Plant. The main and backup electric power was damaged preventing the cooling system from functioning. Fuel rods overheated and led to hydrogen explosions. If heat in the fuel rods is not dissipated, the nuclear fuel coating material (e.g., Zircaloy) reacts with water vapor to generate hydrogen at high temperatures. This hydrogen is released into the containment area. If the released hydrogen burns, the stability of the containment area is significantly impacted. In this study, researchers performed an explosion analysis in a high-risk explosion area, analyzing the hydrogen distribution in a containment building [1] and the effects of a hydrogen explosion on containment safety. Results indicated that a hydrogen explosion was possible throughout the containment building except the middle area. If an explosion occurs at the top of the containment building with more than 40% of the hydrogen collected or in the bottom right or left side of the of containment building, safety of the containment building could be threatened.

THE STUDY OF SCINTILLATION ON C-BAND LOW ELEVATION ANGLE AT SRI-RACHA SATELLITE EARTH STATION

  • Theerapatpaiboon, P.;Sukkaewthanom, S.;Leelaruji, N.;Hemmakorn, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.20-23
    • /
    • 2004
  • Tropospheric and ionospheric scintillation may impact on C-band satellite communication systems, particularly at lowmargin systems and low elevation angles. This paper presents the characteristics of C-Band scintillation at low elevation angle received and recorded the satellite signal from INTELSAT above the Pacific Ocean Region (POR) from January 2002 to December 2002 in the period of solar maximum. We received 3.9525 GHz beacon signal at Sri-Racha satellite earth station by the 32 meters in diameter antenna with 8 degrees of elevation. The analysis was found that the values of amplitude fluctuation is mostly about 0.5-0.6 dB peak to peak and $S_4$ = 0.03-0.04. The maximum amplitude fluctuation is about 9 dB peak to peak occurring in April. The occurrence numbers of scintillation is most frequently in April and minimum in November. The occurrence numbers of tropospheric scintillation are most frequently in April and October, and minimum in November. It relates to temperature and water vapor pressure variation in $N_{wet} $. The occurrence numbers of ionospheric scintillation are most frequently in April and September, and minimum in November. It varies corresponding to both equinoctial periods (vernal and autumnal equinox in March and September) and solstice periods (June and December) respectively.

  • PDF

Detemination of Short-term Bioconcentration Factor on Dichlorvos, Methidathion and Phosalone in Brachydanio rerio and Xiphophorus hellieri (Brachydanio rerio와 Xiphophorus hellieri를 이용한 Dichlorvos, Methidathion 및 Phosalone의 단기간 생물농축계수의 측정)

  • 민경진;전봉식;차춘근;김근배;조영주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • This study was performed to investigate the bioconcentration of dichlorvos, methidathion and phosalone in zebrafish (brachydanio rerio), red sword tail(Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one-hundredth concentration of 96-hrs LC$_{50}$ and one-thousandth concentration of 96-hrs LC$_{50}$ and test periods were 3, 5 and 8 days. The deputation rate of each pesticide from the whole body of fish was determined over the 24-hr period after treatment. Obtained results are summerized as follows: In the case of dichlorvos, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were increased as increasing test concentration. In the case of same experimental concentrations, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were decreased as proloning test periods, especially dropped after 5days. Dichlorvos concentration in red sword tail extract were increased as increasing test concentration, lyat BCF$_{s}$ in concentration of 0.05 ppm, 0.01 ppm and one-hundredth of 96-hrs LC$_{50}$ were decreased. Methidathion and phosalone concentration in zebrafish extract in zebrafish extract were increased as increasing test concentration, but there was little difference in BCF$_{s}$. In the case of same experimental concentrations, there were little differences in BCF$_{s}$ and concentration in zebrafish extract. In the case of red sword tail, it was impossible to calculate on BCF$_{s}$ data because test concentration was under the detecting limit on GC or test fish were die. Determined deputation rate conatant were highest on dichlorvos, and followed by methidathion, and phosalone. The results of determining depuration rate of these pesticides showed that the high BCF in fish might be due to the slow depuration rate in fish, it is thought to be responsible for vapor pressure, water solubility and partition coefficient. It is suggested that one-hundredth concentration of 96-hrs LC$_{50}$ will be proper test concentration because one-thousundth of LC$_{50}$ was under the detecting limit on GC. Dichlorvos, methidathion and phosalone, organophosphorous pesticides, were examined to their BCF$_{s}$ and depuration rates by means of fish test.

  • PDF

A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator (LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구)

  • HAN, DANBEE;KIM, YOONJI;YEOM, KYUIN;SHIN, JAERIN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.

Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation (30kW급 LFG 가스터빈 발전용 연료화 정제시스템 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Biogas is a carbon neutral energy and consists of mostly methane and carbon dioxide, with smaller amounts of water vapor, and trace amounts of $H_2S$, Siloxane and other impurities. Hydrogen sulfide and Siloxane usually must be removed before the gas can be used for generation of electricity or heat. The goals of this project are to develope the Fuel conditioning system of Land Fill Gas for 30kW-Micro Gas Turbine co-generation system. The fuel conditioning system mainly consists of $H_2S$ removal system, Land Fill Gas compressor, Siloxane removal system and many filtering systems. The fuel requirement of 30kW MGT is at least 32% of $CH_4$, $H_2S$ (<30 ppm), Siloxane (<5ppb) and supply pressure (> 0.6 MPa) from LFG compressor. Main mechnical charateristics of Micro Gas Turbine system by using LFG have the specific performance; 1) high speed turbine speed (96,000 rpm) 2) very clean emmission NOx (<9 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for LFG fuel conditioning system. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of Land Fill Gas (LFG), this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

Analysis of An Outflow Boundary Induced Heavy Rainfall That Occurred in the Seoul Metropolitan Area (수도권에서 유출류 경계(Outflow Boundary)를 따라 발생한 집중호우 분석)

  • Lee, Ji-Won;Min, Ki-Hong
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.455-466
    • /
    • 2017
  • In Korea, property and human damages occur annually due to heavy precipitation during the summer. On August 8, 2015, heavy rainfall occurred in the Seoul metropolitan area due to an outflow boundary, and $77mmhr^{-1}$ rainfall was recorded in Gwangju, Gyeonggi Province. In this study, the simulation of the WRF numerical model is performed to understand the cause and characteristics of heavy rainfall using the Conditional Instability of the Second Kind (CISK), potential vorticity (PV), frontogenesis function, and convective available potential energy (CAPE) analyses, etc. Convective cells initiated over the Shandong Peninsula and located on the downwind side of an upper level trough. Large amounts of water vapor were supplied to the Shandong Peninsula along the southwestern edge of a high pressure system, and from the remnants of typhoon Soudelor. The mesoscale convective system (MCS) developed through CISK process and moved over to the Yellow Sea. The outflow boundary from the MCS progressed east and pushed cold pool eastward. The warm and humid air over the Korean Peninsula further enhanced convective development. As a result, a new MCS developed rapidly over land. Because of the latent heat release due to convection and precipitation, strong potential vorticity was generated in the lower atmosphere. The rapid development of MCS and the heavy rainfall occurred in an area where the CAPE value was greater than $1300Jkg^{-1}$ and the fronto-genesis function value of 1.5 or greater coincided. The analysis result shows that the MCS driven by an outflow boundary can be identified using CISK process.

Assessment of Reference Evapotranspiration Equations for Missing and Estimated Weather Data (기상자료의 결측과 산정에 따른 기준작물 증발산량 공식의 비교 평가)

  • Yoon, Pu Reun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.15-25
    • /
    • 2018
  • Estimating the reference evapotranspiration is an important factor to consider in irrigation system design and agricultural water use. However, there is a limitation in using the FAO Penman-Monteith (FAO P-M) equation, which requires various meteorological data. The purpose of this study is to compare three reference evapotranspiration (ETo) equations in the case of meteorological data missing for 11 study weather stations. Firstly, the FAO P-M equation is used for reference potential evapotranspiration estimation with the actual solar radiation data $R_n$ and the actual vapor pressure $e_a$. Then, in the case of $R_n$, and $e_a$ are missed, the reference evapotranspirations applying FAO P-M, Priestley-Taylor (P-T), Hargreaves (HG) equation were calculated using other meteorological factors. Secondly, MAE, RMSE, $R^2$ were calculated to compare ETo relationship from the ETo equations. From the results, ETo with Hargreaves equation in coastal areas and the Priestley-Taylor equation in the inland areas showed relatively high correlation with FAO P-M when $e_a$ data is missed. In the case of $R_n$ data is missed or two weather data, $e_a$, and $R_n$ data are all missed, $R^2$ value in Priestley-Taylor equation was highest in coastal areas, and $R^2$ values in Hargreaves equation were the high values for 7 inland areas. The results of sensitivity analysis showed that net radiation was the most sensitive for P-T and HG equation, and for FAO P-M, the most sensitive factor was net radiation and relative humidity, air temperature and wind speed were follows. Therefore, in considering of the accessibility to the coast, the types of the missing wether data, and the correlation and the magnitude of error, the reference evapotranspiration equations would be selected in sense of different conditions.