• Title/Summary/Keyword: Water Use

Search Result 8,336, Processing Time 0.044 seconds

Development of agricultural water use indicator (농업용수 사용지표 개발)

  • Lee, Kwang-Ya;Lim, Jong-Wan;Hong, Dae-Byuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.33-36
    • /
    • 2002
  • The purpose of this study is to develope a indicator for agricultural water use. Agricultural water is challenged by the increase of water use in the sectors of urbanization and industry and social pressure to use water in sustainable and environmentally sound way. The development of agricultural environment indicators is divided into 13 sectors, among which agricultural water use indicators include amount and intensity of agricultural water use, efficiency of agricultural water use, shortage or surplus of water use, water stress, etc.. Agricultural water use indicators provide basic data for sustainable and environmentally sound agricultural development, and also help policy decision makers to solve water shortage problems through water policy and water management measures by making the most of the total available water resources.

  • PDF

Evaluation of Water Productivity of Thailand and Improvement Measure Proposals

  • Suthidhummajit, Chokchai;Koontanakulvong, Sucharit
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.176-176
    • /
    • 2019
  • Thailand had issued a national strategic development master plan with issues related to water resources and water security in the entire water management. Water resources are an important factor of living and development of the country's socio-economy to be stable, prosperous and sustainable. Therefore, water management in both multidimensional and multi-sectoral systems is important and will supports socio-economic and environmental development. The direction of national development in accordance with the national strategic framework for 20 years that requires the country to level up security level in terms of water, energy and food. To response to the proposed goals, there is a subplan to increase water productivity of the entire water system for economical development use by evaluating use value and to create more value added from water use to meet international standard level. This study aims to evaluate the water productivity of Thailand in each basin and all sectors such as agricultural sector, service and industrial sectors by using the water use data from water account analysis and GDP data from NESDB during the past 10 years (1996-2015). The comparison of water productivity with other countries will also be conducted and in addition, the measures to improve water productivity in next 20 years will be explored to response to the National Strategic Master Plan goals. Water productivity is defined as output per unit of water depleted. The simplest way to compare water productivity across different enterprises is in monetary terms. World Bank presents water productivity as an indication of the efficiency by which each country uses its water resources. There are two data sets used for water productivity analyses, i.e., the first is water use data at end users and the second is Gross Domestic Product. The water use at end users are estimated by water account method based on the System of Environmental-Economic Accounting for Water (SEEA-Water) concept of United Nations. The water account shows the analyses of the water balance between the use and supply of each water resource in physical terms. The water supply and use linkage in the water account analyses separated into each phases, i.e., water sources, water managers, water service providers, water user at end user under water regulators of all kinds of water use activities such as household, industrial, agricultural, tourism, hydropower, and ecological conservation uses. The Gross Domestic Product (GDP), a well- known measuring method of the national economic growth is not actually a comprehensive approach to describe all aspects of national economic status, since GDP does not take into account the costs of the negative impacts to natural resources that result from the overexploitation of development projects, however, at present, integrating the environment with the economy of a country to measure its economic growth with GDP is acceptable worldwide. The study results will show the water use at each basin, use types at end users, water productivity in each sector from 1996-2015 compared with other countries, Besides the productivity improvement measures will be explored and proposed for the National Strategic Master Plan.

  • PDF

Characteristics of Irrigation on Yi-dong Agricultural Water District (이동 농업용수지구 관개특성)

  • 김진택;이용직
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.62-65
    • /
    • 2003
  • Improvement of the efficiency of the agricultural water use is important for the sustainable water management because the agricultural water use occupied above 60% of the total water use in korea. For the analysis of agricultural water use the Yi-dong experimental site was selected. For the monitoring system of the experimental site, four rainfall gauging stations and twenty-six water level gauging stations are established and operated. Analyses of the measured data are processed for the irrigation efficiency of agricultural water on the eight irrigation areas.

  • PDF

The Variation of the Urban Water Use and the Distribution Reservior Capacity with Time for a Day (상수도(上水道)의 1일(日) 급수량(給水量) 및 배수지(配水池) 용량(容量) 변화(變化)에 관한 연구(硏究))

  • RHEE, Kyoung Hoon;PARK, Sung Chun;MOON, Byoung Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.118-126
    • /
    • 1995
  • The variation of the urban water demand and the amount of water in the distribution reservoir was studied with time for a day. The city of Kwangju in Korea was selected as a study area. The population of Kwangju in the end of 1993 was more than one million and two hundred thousand peoples. The average of daily water use in 1993 was about three hundred and fifty thousand tons a day. One day was devided into 12 divisions with a 2 hour increment. The water use demand related to the amount of water in the distribution reservoir was observed for the given time interval of a day. The water use index was defind in percentage that indicates the ratio of the amount of water use for a time interval to the amount of water use for a day. The water use index with consideration of the water stored in the reservoir was found to be useful to manage and to operate the water supply systems in real time.

  • PDF

Assessing the Green Total Factor Productivity of Water Use in Mainland China

  • Ning, Meng;Wu, Zheru;Zhou, Zhitian;Yang, Duogui
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.201-206
    • /
    • 2021
  • The significance of high-quality development and green total factor productivity has attracted widespread attention and research, while few studies on green total factor productivity that considers the use of water resources have been conducted in the context of water shortages and water stress. In this study, the green total factor productivity of water use from 2005 to 2015 in mainland China is evaluated based on the global Malmquist-Luenberger productivity index. Results show that: (1) China's green total factor productivity of water use has been improving since 2005 with an annual global Malmquist-Luenberger productivity index of 1.0104. (2) At the regional level, the eastern zone in mainland China owns the highest green total factor productivity of water use, while that in the intermediate zone ranks last. (3) The green total factor productivity of water use in the southern region (1.0113) significantly higher than that in the northern region (1.0095), and also higher than the national average level in the same period. BPC index has been the most important incluencing factor of green total factor productivity of water use at both national level and regional level since 2011.

Optimal Conjunctive Use of Surface and Ground Water (지표수와 지하수의 최적 연계운영)

  • Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.367-374
    • /
    • 2002
  • Water supply plan by optimal conjunctive use of surface and ground water is studied to prepare expected water deficit in near future. The optimization model for conjunctive use of surface and ground water is developed using discrete differential dynamic programming technique to maximize net benefit by water supply. As a result of applying the model to Namdaechun river located in Yangyang, it is found that water supply reliability using optimal conjunctive use of surface and ground water is much higher than reliability using surface water alone.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.

The Characteristics of the Urban Water Use Trend With Time for a Day (상수도의 1일 홍수량의 시간적 변화의 특성에 관한 연구)

  • Rhee, Kyoung-Hoon;Lee, Sam-No;Moon, Byoung-Seok
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.135-143
    • /
    • 1994
  • The purpose of this study was to improve the understanding of the characteristics of the daily urban water use. The city of Kwangju in Korea was selected as a study area. The population of Kwangju in the end of 1993 was more than one million and two hundred thousand peoples. The average of daily water use in 1993 was about three hundred and fifty thousand tons a day. The variation of the urban water demand trend with time for a day was studied. One day was devided into 12 divisions with a 2hour increment. The water use demand for the given time interval of a day was observed. The water use index was defind in percentage that indicates the ratio of the amount of water use for a time interval to the amount of water use for a day. The water use index was found to be useful to manage and to operate the water supply systems. In addition to this, the probability distribution of the water use demand for each time interval was tested using the K-S(Komogorov-Smirnov) method. The normal distribution type was found to be appropriate as the probability distribution type for the variation of water demand for the given time interval of a day.

  • PDF

A Study on Typical Rates of Water-use for Primary School, Middle School and High School Facilities (초.중.고등학교 시설의 급수 사용량에 대한 연구)

  • Kim, Kyu-Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.802-807
    • /
    • 2008
  • A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows; 1) On the whole, typical rates of water-use was founded out 15 L/stu. d in pirmary school, 10 L/stu. d in middle school and 30 L/stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour's in primary school, 7 hour's in middle school and 8 hour's in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking peak load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.