• Title/Summary/Keyword: Water Treatment Technology

Search Result 2,994, Processing Time 0.035 seconds

Removal Ratio of Nitrogen & Phosphorus according to Sewage Inflow in the Biological Treatment(Biological Nutrient Removal)Process (유입하수에 따른 BNR에서의 N과 P 제거율에 관한 연구)

  • Lee, Han-Seob;Choi, Sung-Bu;Chung, Kwang-Bo;Ahn, Sung-Hwan;Kim, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.669-678
    • /
    • 2014
  • The amount of waste water generated from the domestic sources is consistently increasing in proportion to economic growth, and the conventional activated sludge process is widely being used for general waste water treatment. But the ministry of environment becomes stringthent treatment standards of N and P (less than 20mg/L of N, 2mg/L of P) to prevent the eutrophication of lake water, and therefore highly advanced treatment technology is required not only in the existing treatment plants where the activated sludge process is being used, but also in newly constructed treatment plants for the treatment of N and P. This study is aimed at highly operating the engineering technology method was developed by domestic to eliminate N and P at the same time. Experiments were conducted in the treatment plant located in Yong In city. The bioreactor was started from the principal equipment for the elimination of N and P and the elimination of organic compounds. It consists of an internal recycle piping from the end of the aerobic tank to the anoxic tank and external recycle piping from the final settling basin to the denitrification tank. By experiment of 4 types separate inflow of waste water to the denitrification tank and the anaerobic tank, and changes in staying time at the anoxic tank and the aerobic tank, the elimination of organic compounds in each type and the relationship in the efficiency between the elimination of N and P were researched.

Element Technology and Strategy of Digital Twin in the Water Treatment (수처리공정의 디지털 트윈 요소기술과 추진 전략)

  • Young-Man Cho;Yong-Jun Jung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.284-290
    • /
    • 2023
  • Domestic water supply and sewage facilities are rapidly aging and maintenance difficulties such as aging of operation and management personnel are overlapping, so Digital Twin technology is attracting attention as an intelligent means of process management. Digital twin projects for domestic water treatment processes include the smart sewage treatment project promoted by the Ministry of Environment, projects independently promoted by some local governments, and digital twin purification plant projects promoted by K-water. However, the content of digital twin promotion is different for each institution. Therefore, in the water treatment process, technological standardization and step-by-step implementation methods for digital twins must be preceded to reduce trial and error in future business promotion. This study aims to provide an efficient promotion plan by prescribing the digital twin element technology and composition method in the water treatment process and reviewing the contents currently being promoted by the Ministry of Environment, local governments, and K-Water individually.

Effects of Adding UV and H2O2 on the Degradation of Pharmaceuticals and Personal Care Products during O3 Treatment

  • Kim, Il-Ho;Kim, Seog-Ku;Lee, Hyun-Dong;Tanaka, Hiroaki
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.131-136
    • /
    • 2011
  • The degradation of 30 pharmaceuticals and personal care products (PPCPs) subjected to $O_3$, $O_3$/UV, and $O_3/H_2O_2$ treatments were investigated using semi-batch tests and evaluated by their pseudo-first-order rate constants. The additional application of UV or $H_2O_2$ during $O_3$ treatment significantly improved the degradation rate of most of the PPCPs. At the same $O_3$ feed rate, $O_3$/UV treatment exhibited much higher PPCP degradation efficiency than that of $O_3$ treatment. This was probably due to degradation of the PPCPs by $O_3$, direct UV photodegradation, and OH radicals that formed from the photodegradation of $O_3$ during $O_3$/UV treatment. PPCP degradation by $O_3$ was also promoted by adding $H_2O_2$ during the $O_3$ treatment. However, when the initial $H_2O_2$ concentration was high during $O_3$ treatment, OH radicals were likely to be scavenged by excess $H_2O_2$, leading to low PPCP degradation. Therefore, it is important to determine the appropriate $H_2O_2$ dosage during $O_3$ treatment to improve PPCP degradation when adding $H_2O_2$ during $O_3$ treatment.

Membrane Technology for Waste Water Recovery

  • Okazaki, Minoru
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.22-33
    • /
    • 1996
  • With the experience of the 1994 drought, and the shortage of water resources in Japan, it has been re-informed upon us ensure and maintain the stability of water resources. Accordingly, with each plant, a serious appraisal has begun looking at the re-use of waste water. Membrane technology is an important process for waste water recovery. Effluent kom waste water facilities changes the quality of water significantly. The conventional pre-treatment of RO is hard to supply good quality feed water to RO in the waste water recovery system. The microfiltration system as a pre-treatment of RO in the paper overcomes the fouling with the air backwash and is operated in direct flow mode at a low pressure producing a high flux. The paper will focus the waste water recovery using membrane technology and many examples will be given.

  • PDF

A study on membrane technology for surface water treatment: Synthesis, characterization and performance test

  • Haan, Teow Yeit;Shah, Mubassir;Chun, Ho Kah;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • The use of membrane as an innovative technology for water treatment process has now widely been accepted and adopted to replace the conventional water treatment process in increasing fresh water production for various domestic and industrial purposes. In this study, ultrafiltration (UF) membranes with different formulation were fabricated via phase inversion method. The membranes were fabricated by varying the polymer concentration (16 wt%, 18 wt%, 20 wt%, and 21 wt%). A series of tests, such as field emission scanning electron microscope (FESEM), pore size and porosity, contact angle, and zeta potential were performed to characterize the membranes. The membrane performance in terms of permeation flux and rejection were evaluated using a laboratory bench-scale test unit with mine water, lake water and tube well as model feed solution. Long hour filtration study of the membranes provides the information on its fouling property. Few pore blocking mechanism models were proposed to examine the behaviour of flux reduction and to estimate the fouling parameters based on different degree of fouling. 21 wt% PVDF membrane with smaller membrane pore size showed an excellent performance for surface water treatment in which the treated water complied with NWQS class II standard.

A Status of Agricultural Water Quality and Improvable Countermeasure in Korea (우리나라 농업용수 수질오염 현황과 개선대책)

  • Baeg, Cheong-Oh;Kang, Sang-Gu;Lee, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.506-519
    • /
    • 1996
  • The water quality in the rural areas is degrading due to a variety of causes such as the increase of the urban sewage and industrial wastes, the disposal of solid wastes, the growth of livestock waste, the growth of leisure facilities, the establishment of agricultural industry estates and etc. The water pollutants are scarce while the effluent is increasing from wide scattered sources. The technology specifically designed for the rural wastes water treatment plant needs to be implemented with improvement of agricultural water quality. 1. An integrated management measures against water pollution sources. The prevention of water pollution is the best measures in the environmental pollution. Hence, the most effective measures needs to be against the sources. Small-scale water treatment plants needs to be constructed in each village in the rural areas. As for the industrial effluent, the effluent discharge needs to be strictly monitored. Government subsidy for the establishment of treatment plant for livestock wastes is necessary. 2. The establishment of national-wide network for agricultural water quality. The network for agricultural water quality have been operated to conserve the agricultural water quality, and to develop management policies by the assessment of water pollution in the rural areas. The results of agricultural water quality network indicates that the water quality is degrading not only around urban areas but also in the distant rural areas, and the water quality at the pumping stations and weirs is worse than that of reservoirs. 3. The legal, systematic, and technical approaches for the agricultural water quality management. The actions currently implemented for the improvement of agricultural water quality involve temporary measures such as the improvement of irrigation facilities. These contingency measures are not effective in the long-term, and sometimes bring secondary pollution. Therefore, integrated measures covering the whole water environment such as the flow, quality, river morphology, aquatic ecosystem, and the surrounding environment, need be invented and implemented. Besides, the legal, systematic, and technical frameworks for the management are not fully established so far. The technology for the treatment of rural water pollution should be refined afterwards, and the research for the development of rural waste water treatment plant should be carried out.

  • PDF

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Consideration on the Concentration of the Active Substances Produced by the Ballast Water Treatment System (선박평형수 처리장치의 활성물질 농도에 관한 고찰)

  • Kim, Eun-Chan;Oh, Jeong-Hwan;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • The International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Thirty-four ballast water treatment systems were granted IMO active substance basic approval, among which twenty systems were granted final approval. This paper is an in-depth consideration of the mechanism principles of the treatment systems that received active substance basic or final approval from IMO, and on the concentration of Total Residual Oxidant (TRO). The TRO maximum allowable discharge concentration was reduced by neutralization equipment, resulting with a concentration lower than 0.2 ppm. However, between various treatment systems TRO maximum allowable dosage showed large differences, ranging from 1 to 15 ppm. The discrepancies of treatment allowable dosage concentration between different treatment systems are largely due to the properties of species and water conditions such as the temperature and turbidity, rather than the characteristics of treatment systems and the type or presence of filters etc.

Comparative performance evaluation of two UF pilot plants at the Alto da Boa Vista WTP (São Paulo, Brazil)

  • Oliveira, T.F.;Mierzwa, J.C.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 2011
  • Ultrafiltration is an emerging technology for drinking water treatment because it produces better water quality as compared with conventional treatment systems. More recently, the combination of UF technology with other processes in order to improve its performance has been observed. These associations aim to maximize the contaminants removal and reduce membrane fouling. The operational performance of contaminants removal and water production of two UF pilot plants was compared. The first plant (Guarapiranga) was fed with raw water and the second plant (ABV) with pre-treated water by the coagulation, flocculation and sedimentation processes at Alto da Boa Vista WTP (Sao Paulo, Brazil). Both units operated continuously for approximately 2,500 hours, from September/2009 to January/2010. The results showed that the ABV UF pilot plant was able to operate at higher specific fluxes (6.2 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$) than Guarapiranga (3.1 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$). However, the number of chemical cleanings conducted in both pilot units during the considered operation period was the same (4 chemical cleanings for each plant), which shows that the pre-treatment reduced the membrane fouling. The water quality at ABV for all the variables analyzed was better, but the feed water quality was also better due to pretreatment. The rejection values for the different contaminants were higher at Guarapiranga mainly because of a pollution load reduction after pre-treatment at ABV. Even with the better performance of the ABV UF pilot plant, it is necessary to take into consideration the complexity of the complete treatment system, and also the costs involved in the construction and operation of a full-scale treatment unit.

A Study on Application and Verification of Heavy Water Treatment Effects Using Plant Cultivation (Vegetation) on Floating Island (식생섬에 의한 중수처리 효과 검증과 적용에 관한 연구)

  • Kwon, Dong Min;Kwon, Soon Hyo;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This this study was conducted with the aim of doing experiment on the effect of water purification by using an artificially built plant island, which is one of the eco-techniques, and aquatic plants as a plan for the reuse of water for obtaining water resources, thereby analyzing the removed quantity, and applying the experimental results to the reuse of water. As a result of doing experiments, this study obtained a good measured value of BOD (biochemical oxygen demand) 4.7mg/L, and COD (chemical oxygen demand) 7.2mg/L below the heavy water standard of BOD 10mg/L and COD 20mg/L, respectively. The chromaticity showed 89.2% removal efficiency, but final treated wastewater was found to show chromaticity 58 degrees exceeding chromaticity 20 degrees which are the water quality standard of the reuse of water. The results revealed that T-N produced 27% removal efficiency on an average while T-P produced 38% removal efficiency on an average, showing that the removal effect of N & P wasn't big. According to the currently enforced "Water Quality Standard of Heavy Water by Use", the use of water for sprinkling and landscaping was found to be available. Accordingly, this study suggested a nature-friendly, economically-efficient, and eco-technological water treatment technique which will make it possible to overcome the limit of the existing physio-chemical water treatment technology, reduce the costs for maintenance and facilities, and also reduce the limit of space restraint for installation of facilities.