• Title/Summary/Keyword: Water Tank Test

Search Result 388, Processing Time 0.047 seconds

The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility (하나로 유동모의 설비의 유체순환계통 해석)

  • Park, Yong-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

A Study on the Anti-rolling Effect of Stem Sub-body in the Stepped-Hull Planing Boat (스텝 붙이 활주형 모터보트 선미부가물의 횡요저감효과에 관한 연구)

  • Kang, Byung-Yoon;Park, Chung-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.84-89
    • /
    • 2008
  • It is hard to find experimental data for a model test of small high-speed planning boats. It is difficult to verify the performance seen in a model test for a high-speed boat because the ship-model scale-ratio is very small and the flow velocity of the circulating water channel and the X-carriage speed of the towing tank are restricted. Therefore most hull-form designs for high-speed small boats depend on the sea-trial test result for similar boats or evaluation through numerical calculations. This study investigated the anti-rolling effect of the stern sub-body in a 50-knot doss planning boat. To carry out this work, new model test procedures were set up in the actual sea. Using this method, the anti-rolling effect of the stern sub-body was investigated. A stern sub-body attached to a planning boat was proved to be effective in reducing the roll and pitch angle.

A Study on Resistance Test of Icebreaker with Synthetic Ice (합성 얼음을 사용한 쇄빙선 저항시험에 대한 연구)

  • Song, Yun-Young;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.389-397
    • /
    • 2007
  • This research describes a framework to compare and analyze the icebreaker(Terry Fox) resistance in pack ice condition between with a refrigerated ice and a synthetic ice. Model tests with a refrigerated ice have been conducted at Institute for Ocean Technology (IOT/NRC) and the tests with a synthetic ice were conducted at Pusan National University towing tank. For the validation of further tests of measurement and accuracy, the open water tests were first carried out with same model ship to compare the test results of both Institutes. Two different size of the wax-type synthetic ice were used and tests were conducted in pack ice of three different concentration ice conditions. The test results show that the difference of resistance between with synthetic and with refrigerated ice becomes larger according to the increase of ship speed. Although the quantity of resistance difference is not so small in high speed range, the present study is predicted to be used as a useful correlation between synthetic and refrigerated ice.

A Characteristics of Biogas Recovery and Biodegradability of Piggery Wastewater Using Granule of Two-Phase Anaerobic Process with UASB (UASB를 적용한 이상 혐기공정 granule에 의한 양돈폐수의 바이오가스 생성과 생분해 특성 평가)

  • Oh, SungMo;Bae, Yoon Sun;Park, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2007
  • The purpose of this study was to investigate the biodegradability and performance of organic removal and methane production rate when treating piggery wastewater using a granule of two-phase anaerobic process applied UASB. BMP test was conducted as simple means to monitor relative biodegradability of substrate and to determine methane production of an organic material. The two-phase anaerobic process is consisted of a continuous flow stirred-tank reactor (CFSTR) for the acidification phase and an Upflow Anaerobic Sludge Blanket reactor (UASB) for the methanogenesis. The acidogenic reactor played key roles in reducing the periodically applied shock-loading and in the acidification of the influent organics. A stable maximum biogas production rate was 400mL. The methane contents ranged from 73 to 80% during the experimental period. It is known that most of the removed organic matter was converted to methane gas, and the produced biogas might be high quality for its subsequent use.

In-Situ Application of High-Strength Antiwashout Underwater Concrete

  • Moon Han-Young;Song Yong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.283-291
    • /
    • 2004
  • Recently, the construction of underwater structures has been gradually increased, but underwater concrete got some problems of quality deterioration and water contamination around cast-in-situ of construction. In addition, massive underwater structures such as LNG tank, underwater concrete structures of large and continuous high- strength subterranean wall under water are being demanded lower heat of hydration. In this paper, the mechanical properties of high-strength antiwashout underwater concrete (HAWC) containing with two kinds of mineral admixtures respectively were investigated. On the basis of these results, the pH value and suspended solids of HAWC manufactured in the mock-up test were 10.0$\Box$11.0 and 51 mg/${\iota}$ at 30 minutes later, respectively, initial and final setting time were about 30,37 hours, and the slump flow was 530$\pm$20Tm. In the placement at a speed of $27 m^3/hr$, there was no large difference in flowing velocity with or without reinforcing bar, and flowing slope was maintained at horizontal level. Compressive strength and elastic modulus of the cored specimen somewhat decreased as flowing distance was far; however, those of central area showed the highest value.

Internal Strain Monitoring of Filament Wound Pressure Tanks using Embedded Fiber Bragg Grating Sensors (삽입된 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 압력탱크의 내부 변형률 모니터링)

  • Kim C. U.;Park S. W.;Kim C. G.;Kang D. H.
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • In-situ structural health monitoring of filament wound pressure tanks were conducted during water-pressurizing test using embedded fiber Bragg grating (FBG) sensors. We need to monitor inner strains during working in order to verify the health condition of pressure tanks more accurately because finite element analyses on filament wound pressure tanks usually show large differences between inner and outer strains. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. We fabricated a standard testing and evaluation bottle (STEB) with embedded FBG sensors and performed a water-pressurizing test. In order to increase the survivability of embedded FBG sensors, we suggested a revised fabrication process for embedding FBG sensors into a filament wound pressure tank, which includes a new protecting technique of sensor heads, the grating parts. From the experimental results, it was demonstrated that FBG sensors can be successfully adapted to filament wound pressure tanks for their structural health monitoring by embedding.

The Removal of Petroleum Hydrocarbon from Fine Soil in Soil Washing Water using Advanced Oxidation Processes

  • Jang, Gwan-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.362-367
    • /
    • 2014
  • This study was performed to test the applicability of the ozone/hydroxy radical reaction system, which applied advanced oxidation processes, to remove total petroleum hydrocarbon (TPH) from the fine soil in washing water of the soil washing process. Removal efficiency was tested on 40 L of washing water in a pilot reaction tank. Fine soil contaminated with $800mg\;kg^{-1}$ TPH was prepared at 5% and 10% suspended solids. Testing conditions included ozone/hydroxy radical flow rates of 40, 80, and $120L\;min^{-1}$, and processing time of 2 to 12 hours. The removal efficiency of petroleum hydrocarbon from water waster by ozone/hydroxy radical was increased with higher flow rates and lower percentages of suspended solids. Optimal efficiency was achieved at $80L\;min^{-1}$ flow rate for 4 hours for the 5% suspended solids, and $120L\;min^{-1}$ for 6 hours for the 10% suspended solids. These results verified the efficiency of hydroxy radical in removing TPH and the applicability of the ozone/hydroxy radical reaction system in the field.

Effect of bow hull forms on the resistance performance in calm water and waves for 66k DWT bulk carrier

  • Lee, Cheol-Min;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.723-735
    • /
    • 2019
  • This paper employs computational tools to investigate the cause of resistance reductions in calm water and waves of the sharp bow form compared to the blunt bow in 66,000 DWT bulk carriers. A more slender shape at the fore-shoulder without a bulbous bow is a prominent feature of the sharp bow. The blunt bow incorporates a bulbous shape. A two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. The computational results have been validated with model tests carried out at a towing tank. The pressure component of resistance in the sharp bow is reduced by 8.9% in calm water, and 6.4-12.7% in regular head waves. The frictional components of resistance in the sharp and blunt bows are largely the same.

Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion (흡수에 따른 탄소섬유 강화수지의 파괴거동)

  • Kim, O. G.;Nam, K. W.;Ahn, B. H.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.