• 제목/요약/키워드: Water Supply Network

검색결과 219건 처리시간 0.025초

공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션 (Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House)

  • 김주용;민만기;최영돈
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF

KModSim 모형(模型)에 의한 도시지역(都市地域) 다중수원(多衆水源) 송수관망간(送水管網間) 최적(最適) 연계(連繫) 운영(運營) 연구(硏究) (An Optimal Conjunctive Operation of Water Transmission Systems from Multiple Sources with applying EPAnet and KModSim Model)

  • 류태상;정태성;고익환;하성룡
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.500-504
    • /
    • 2008
  • The objective of this paper is to evaluate the feasibility of using an optimization model as a effective way to search conjunctive operation scheme to meet two conditions; one is to minimize the electric cost for pumping and another is to meet the water demand for satisfying customers. The feasibility is confirmed as comparing the best combinations of pumps between multi-regional water supply networks from multiple sources which are obtained through an optimization modeling and EPAnet modeling. KModsim model, a network optimization model, was used to determine conjunctive operation scheme in the pipe system. KModsim, based on Lagrangian Relaxation algorithm, is useful for modeling network system and obtaining simultaneously pump combination and water allocation with given input option such as energy unit cost supplying from a source into a consumer, operating pumping combination. This study develops the procedure of determining optimal conjunctive operation scheme with using KModsim model. As a study region, the water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. The EPAnet hydraulic simulation result(Ryu et al, 2007, KSWW) gave input data for optimization model; energy unit price(won/$m^3$), water service available area etc.. It was assured that the combination of pump operation through optimum conjunctive operation is to be optimum scheme to obtain the best economic water allocation with comparison to the hydraulic simulation result such as electric cost and pump combination cases. The results obtained through the study are as follows. First, It was found that a well-allocated water supply scheme, the best combination of pump operation through optimum joint operation, promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. Second, an application of KModSim, a network model, gave the amount of water allocation from each source to a consumer with consideration of economic supply. Finally, in a service area available to supply through conjunctive operation of existing inter-regional water supply networks within short distance, a conjunctive operation is useful for determining each transmission pipeline's service area and maximizing the effectiveness of optimizations in pumping operation time.

  • PDF

EPANET을 이용한 농업용 관수로 시스템의 운영 및 유지관리 인자 분석 (Analysis of Operating and Maintenance Parameters for Agricultural Pipeline System Using EPANET)

  • 김남도;김선주;권형중;김필식;박현준
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.17-26
    • /
    • 2017
  • In this study, EPANET model which is using on the pipe network analysis was applied to Haenam irrigation district has provided irrigation water by pipeline system about 1,125ha and then have built pipe network to study area and supply performance evaluation of existing structure was analyzed by SPA (Single Period Analysis) in EPANET. As model results of simulation average ratio of maximum supply quantity/irrigation water requirements(base demand) was analyzed by 2.63. It means also that was analyzed as being capable of ensuring the water supply capacity. It was provided the necessary information for the maintenance facility through analyzed hydraulic behaviors in the pipeline inside such as flow velocities, pressures and hydraulic grade lines. It was satisfied with the allowable design criteria that was compared analyzed results with presented allowable design standards at agricultural production infra improvement project planning and design (Pipeline design standard). In order to analyze efficiency promotions of irrigation water, using Extended Period Simulation it was compared supply quantity with irrigation water requirements while pumps set operating pattern in 24 hours, then efficiency promotions of irrigation water was determined through analyzed oversupply water quantity and occurrence time by branch lines. According to results for oversupply quantity in Haenam district by time and end of branch lines efficiency promotions of irrigation water was suggested from 0.33 % to 37.59 %. To draw reasonable operating rules for water use and through this research, it is expected to be helpful for efficient water use and operational management of agricultural pipeline system to the current agricultural irrigation.

수리해석(水理解析) 모형(模型)을 이용한 다수원(多水源) 송수계통(送水系統)의 연계(連繫) 운영(運營) 방안(方案) 경제성(經濟性) 평가(評價) - 거제시(市)를 대상(對象)으로 - (Feasibility Study on the Conjunctive Operation of Water Transmission Systems from Multiple Source with Applying EPAnet)

  • 류태상;하성룡
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.609-619
    • /
    • 2007
  • The objective of this paper is to evaluate the feasibility of conjunctive Operation between Multi-regional water supply networks from multiple source as a effective way to meet two conditions: to minimize the electric cost for providing water demanded and meet the water flow rate for satisfying customers. EPAnet Model is used to calculate a hydraulic water distribution condition based on an integrated operation of water supply systems located in short distance. The modeling was conducted on several simulation cases including the individual operation by existing inter-regional water supply networks within short distance, the conjunctive operation of more than two existing networks with valve fully closed and full open constraint. As a study distribution system, water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. It was found that a well-allocated water supply scheme based on a conjunctive operation promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. The result such as unit district costs, pareto optimum pump combination sets will be applied to the optimization for a conjunctive operation of existing inter-regional water supply networks within short distance.

상수도관망에서 제한급수에 따른 간헐적 흐름의 특성 및 제어 (Characteristics and control of intermittent flow in water distribution systems due to restricted supply)

  • 양강승;김동홍;정관수;김주환
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.1-11
    • /
    • 2014
  • The water distribution system should be invariably operated on continuous pattern for 24 hours a day. Occasionally, it is not practically possible to operate for 24 hours due to water shortage or financial constraints. Therefore an intermittent water supply is unavoidable in water shortage area and developing countries. But the intermittent water supply can introduce large pressure forces and rapid fluid accelerations into a water supply network. These disturbances may result in new pipe failure, leakage and secondary contamination. This paper proposed an improvement methodology to prevent the disturbances by intermittent water supply. For the study, the hydraulic variation of intermittent flow in water distribution system was measured and analyzed in the field by comparing with simulation of hydraulic model. Installations of control valves such as, pressure reducing and sustaining and air valves were employed for pressure and flow control. The effectiveness of the methods are presented by comparing hydraulic conditions before and after introducing the proposed solutions.

유효유량 개념을 도입한 상수관망 Subsystem 별 중요도 산정 (Evaluation of Subsystem Importance Index considering Effective Supply in Water Distribution Systems)

  • 서민열;유도근;김중훈;전환돈;정건희
    • 한국방재학회 논문집
    • /
    • 제9권6호
    • /
    • pp.133-141
    • /
    • 2009
  • 상수관망의 용수는 수용가가 사용하기에 불편함이 없는 적절한 유량과 압력으로 사용성이 충분히 만족된 상태에서 공급되어야 한다. 상수도 시스템의 수리학적 해석 방법으로 사용되는 Demand Driven Analysis (DDA) 방법은 관망의 수리학적 상태가 변화했을 때 부압이 발생하는 등 비현실적인 결과를 발생시킬 수 있다. Pressure Driven Analysis (PDA) 방법은 비정상상태에서의 압력 및 공급량의 변화를 알기 위하여, 절점수두-용수공급량 관계 (Head-Outflow Relationship, HOR)를 이용하는데, 이는 실측자료의 부족으로 인하여 대부분의 연구에서는 HOR이 가정되어 사용되었다. 본 연구에서는 PDA 분석에서 단점을 가진 HOR 대신, 절점에서 실제 사용성을 만족시키면서 공급이 가능한 용수량인 유효유량을 제안하였다. 그리고 Subsystem이 격리되었을 때 유효유량의 변화를 산정함으로써 격리된 부분의 관망에 대한 영향을 평가하여 이를 Subsystem 중요도 지수(Subsystem Importance Index, SII)로 정의하였다. 이를 위해 최적화 기법 중 하나인 Harmony Search와 상수관망 해석 프로그램인 EPANET을 결합하여 모형을 구축하였다. 제안된 모형을 대규모 상수관망에 적용하였으며, 본 모형은 상수관망의 유지, 보수 시에 관거 혹은 밸브 등의 처리 우선순위 산정 및 상수관망 신뢰도 평가로 활용 가능할 것으로 판단된다. 또한 유효유량산정을 통하여 상수관망이 실제로 사용함에 불편함이 없을 정도로 용수공급이 얼마나 가능한가를 종전에 비하여 보다 정량적으로 산정 가능하다.

낙동강수계 댐과 다기능보의 연계운영을 통한 용수공급효율화에 관한 연구 (A Study on Efficiency of Water Supply through Conjunctive Operation of Reservoirs and Multi-function Weirs in the Nakdong River)

  • 안정민;임태효;이인정;이경락;정강영;이재운;천세억;박인혁
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.138-147
    • /
    • 2014
  • In order to determine the best operating rules for the Nakdong River, three cases were applied to analyze the simulated results of water supply capacity by HEC-ResSim model. This study discussed to present the best operating rules for conjunctive operating of existing the dams and new constructed the weirs through system network. The system network was constructed considering the water supply, the river environment and the operating facility. The water supply capacities are separately evaluated for each case applying the best rules. It is case1 that the dams are operated individually, case2 that the dams are operated in conjunction with the others dams, and case3 that dams and weirs are operated in conjunction with the others dams-weirs. Comparing the cases, case 3 has shown the best water supply capacity of the Nakdong River.

배수관망(配水管網)의 간선배치(幹線配置)에 따른 정류(定流)흐름 해석(解析) (Analysis of Steady Flow by Main Pipe Arrangement in the Water Distributing Pipe Network)

  • 이중석;박노삼;김지학;최윤영;안승섭
    • 상하수도학회지
    • /
    • 제13권3호
    • /
    • pp.73-82
    • /
    • 1999
  • In this study, the optimal analysis for pipe network is performed for the combined ideal pipe network system(CASE 1, CASE 2 and CASE 3) which is composed of 25 nodes, 41 elements, and 1 fixed nodal head with evaluating pressure variation distribution of main and branch in grid composed drainage pipe network. The linear analysis technique used as the analysis method in this study, the KYPIPE being used extensively as the linear technique to design and analysis of pipe network is applied. Firstly, in the analysis of pipe network, the CASE 2 and CASE 3 supply same thing(value) in the result of considering the total flow provided each pipeline, but in the general intension in the case of CASE 2, relative width of supply is more large than CASE 1 and CASE 3. Secondly, in the analysis technique of pipe network, CASE 3 is analysed largest as a result of comparing with same heads, and in the order of their size CASE 2 and CASE 1 were determined but the difference doesn't appear to be obvious. Thirdly, as the result of determining main factor, pressure in the design and analysis of net work. CASE 3 is from Node 3 to 25 than CASE 1 and CASE 2 and it is determined in the order of their size, CASE 2 and CASE 1. Finally, in this study, discharge flow distribution is evaluated in the same condition with 3-type CASE in the case of branch position for designing optimal composed drainage pipe network. As the result of that, branch pipe perform. Therefore, it is thought that the efficient and reasonable management of water supply and sewerage design will be possible if it give all our energies to study at the pipe system design in and out of country in the future.

  • PDF

하나로 비상 보충수 공급계통의 노심 주입 냉각유량 해석 (THE ANALYTIC ANALYSIS OF THE CORE INJECTION COOLING FLOW RATE FOR EMERGENCY WATER SUPPLY SYSTEM IN HANARO)

  • 박용철;김봉수;김경연;우종섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.39-44
    • /
    • 2005
  • In HANARO, a multi-purpose research reactor of 30 MWth, the emergency water supply system consists essentially of an emergency water storage tank located in the level of about thirteen meter (13 m) above the reactor core, a three inch ('3\%') diameter water injection pipe line including injection valves from the tank to the reactor cooling inlet pipe and a test loop to do periodic system performance test. When the water level of the reactor pool comes down to the extremely low due to a loss of reactor pool water accident the emergency water stored in the tank should be fed to the core by the gravity force and at that time the design flow rate is eleven point four kilogram per second (11.4 kg/s). But it is impossible periodically to measure the injection flow rate under the emergency condition because the normal water level should be maintained during the reactor operation. This paper describes a flow network analysis to simulate the flow rate under the emergency condition. As results, it was confirmed through the analysis results that the calculated flow rate agrees with the design requirement under the emergency condition.

  • PDF