• 제목/요약/키워드: Water Supply Management

검색결과 753건 처리시간 0.029초

물수요 중심 용수공급시스템 활용을 위한 국내 농업용수 공급체계 분석 (Analysis of Agricultural Water Distribution Systems for the Utilization of Water-Demand-Oriented Water Supply Systems)

  • 이광야;최경숙
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권2호
    • /
    • pp.139-147
    • /
    • 2013
  • This study analyzed agricultural water distribution systems for the utilization of water demand-oriented water supply systems. Three major TM/TC(telemeter/telecontrol) districts of agricultural water management were selected for analyzing the characteristics of the water distribution systems. In addition, the characteristics of the water supply systems for general water supply zones based on irrigation facilities were also investigated, along with the case of special water management during the drought season. As a result, high annual and monthly variations were observed for the water supply facilities, including the reservoirs and pumping stations. In particular, these variations were more obvious during the drought season, depending on the type of facility. The operations of the pumping stations and weirs were more sensitive to the stream levels than the reservoirs, and the smaller reservoirs were influenced more than the larger reservoirs. Therefore, a water-demand-oriented water supply system should consider the existing general practices of water management in the agricultural sector, and focus on achieving a laborsaving system rather than water conservation in the case of reservoirs. Equal water distribution from the start to the end point of irrigation channels could be an effective solution for managing pumping stations.

  • PDF

Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정 (Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method)

  • 박해금;김기범;형진석;김태현;구자용
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.

기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망 (Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios)

  • 남원호;홍은미;김태곤;최진용
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

농업용수의 잔여 공급계획량 및 수요예측량에 의한 관개 취약시기 산정 (Estimating Vulnerable Duration for Irrigation with Agricultural Water Supply and Demand during Residual Periods)

  • 남원호;김태곤;최진용;이정재
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.123-128
    • /
    • 2012
  • For optimal reservoir operation and management, there are essential elements including water supply in agricultural reservoir and demand in irrigation district. To estimate agricultural water demand and supply, many factors such as weather, crops, soil, growing conditions cultivation method and the watershed/irrigation area should be considered, however, there are occurred water supply impossible duration under the influence of the variability and uncertainty of meteorological and hydrological phenomenon. Focusing on agricultural reservoir, amount and tendency of agricultural water supply and demand shows seasonally/regionally different patterns. Through the analysis of deviation and changes in the timing of the two elements, duration in excess of water supply can be identified quantitatively. Here, we introduce an approach to assessment of irrigation vulnerable duration for effective management of agricultural reservoir using time dependent change analysis of residual water supply and irrigation water requirements. Irrigation vulnerable duration has been determined through the comparison of water supply in agricultural reservoir and demand in irrigation district based on the water budget analysis, therefore can be used as an improved and basis data for the effective and intensive water management.

상수도 지하시설물의 효율적 관리를 위한 응용시스템 개발 -전주시를 대상으로- (Development of an Application System for Efficient Management of Underground Water Supply Facility - Pilot Study in Chonju City -)

  • 오권호;진철하;이근상;정승현;조기성
    • 한국측량학회지
    • /
    • 제18권2호
    • /
    • pp.111-120
    • /
    • 2000
  • 상수, 하수, 전기 그리고 가스 등의 시설물들은 우리 생활에 필요한 도시기반시설로서 대부분 지하에 매설되어 있어 지상시설물에 비해 효율적인 관리가 어렵다. 지하시설물 관리소홀로 발생하는 도시재난을 방지하고 도로굴착 중복공사에 따른 예산낭비와 교통체증을 감소시키기 위해서는 지하시설물에 대한 조사 탐사 및 데이터베이스 구축과 함께 지하시설물 데이터를 효율적으로 관리하기 위한 응용시스템 개발이 요구된다. 전주시는 국가지리정보체계 사업의 일환으로 1998년 12월부터 상수도 지하시설물 전산화 사업을 실시하여 시가화 구역 39.6$km^2$내 80 mm 이상의 상수관 물량 402.89 km 대한 조사/탐사 작업을 수행하였다. 또한 80mm 이하 537 km관에 대해서는 별도의 조사/탐사작업을 수행하지 않고 급수카드를 기초로 데이터베이스를 구축하였다. 또한 기존의 각 부서별 업무프로세스를 GIS 시스템을 활용할 수 있는 체계로 수정하였고 업무프로세스를 기반으로 상수도 지하시설물 관리시스템을 개발하였다. 개발된 상수도 지하시설물 관리시스템은 기본도관리, 상수도검수, 관로관리 및 관로조회, 공사관리, 운영관리 그리고 도면관리등의 하위시스템으로 구성되어 있다. 본 연구에서는 지하시설물 조사/탐사 과정 및 방법 그리고 조사/탐사 과정중 발생한 문제점을 도출하고 개발한 상수도 지하시설물 관리시스템을 구성하고 있는 각각의 서브시스템들의 기능들을 제시하였다.

  • PDF

농업용수 유역 물수지 분석 모델 개발 및 적용 (Development and Application of Water Balance Network Model in Agricultural Watershed)

  • 윤동현;남원호;고보성;김경모;조영준;박진현
    • 한국농공학회논문집
    • /
    • 제66권3호
    • /
    • pp.39-51
    • /
    • 2024
  • To effectively implement the integrated water management policy outlined in the National Water Management Act, it is essential to analyze agricultural water supply and demand at both basin and water district levels. Currently, agricultural water is primarily distributed through open canal systems and controlled by floodgates, yet the utilization-to-supply ratio remains at a mere 48%. In the case of agricultural water, when analyzing water balance through existing national basin water resource models (K-WEAP, K-MODISM), distortion of supply and regression occurs due to calculation of regression rate based on the concept of net water consumption. In addition, by simplifying the complex and diverse agricultural water supply system within the basin into a single virtual reservoir, it is difficult to analyze the surplus or shortage of agricultural water for each field within the basin. There are limitations in reflecting the characteristics and actual sites of rural water areas, such as inconsistencies with river and reservoir supply priority sites. This study focuses on the development of a model aimed at improving the deficiencies of current water balance analysis methods. The developed model aims to provide standardized water balance analysis nationwide, with initial application to the Anseo standard watershed. Utilizing data from 32 facilities within the standard watershed, the study conducted water balance analysis through watershed linkage, highlighting differences and improvements compared to existing methods.

수도 서비스의 진화! 소비자 중심의 스마트 물 관리 - Smart Water City 시범사업 - (Evolution of Water supply system! Smart Water Management for customer - Smart Water City Pilot Project -)

  • 김재복
    • 상하수도학회지
    • /
    • 제29권4호
    • /
    • pp.511-517
    • /
    • 2015
  • Korea's modern waterworks began with construction of DDukdo water treatment plant in 1908 and has been growing rapidly along with the country's economic development. As a result, water supply rates have reached 98.5% based on 2013. Despite multilateral efforts for high-quality water supply, such as introduction of advanced water treatment process, expansion of waterworks infrastructure and so on, distrust for drinking tap water has been continuing and domestic consumption rate of tap water is in around 5% level and extremely poor comparing to advanced countries such as the United States(56%), Japan(52%), etc. Recently, the water management has been facing the new phase due to water environmental degradation caused by climate change, aging facilities, etc. Therefore, K-water has converted water management paradigm from the "clean and safe water" to the "healthy water" and been pushing the Smart Water City(SWC) Pilot Project in order to develop and spread new water supply models for consumers to believe and drink tap water through systematic water quality and quantity management combining ICT in the whole water supply process. The SWC pilot projects in Pa-ju city and Go-ryeong county were an opportunity to check the likelihood of the "smart water management" as the answer to future water management. It is needed to examine the necessity of smart water management introduction and nationwide SWC expansion in order to improve water welfare for people and resolve domestic & foreign water problems.

SWMM 모형을 활용한 평야부 관개효율 및 용수공급 취약성 평가 (Assessment of Irrigation Efficiency and Water Supply Vulnerability Using SWMM)

  • 신지현;남원호;방나경;김한중;안현욱;이광야
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.73-83
    • /
    • 2020
  • Agricultural drought is a natural phenomenon that is difficult to observe and quantitatively express, and agricultural water use is high and usage patterns are diverse, so even if there is a lack of rainfall. The frequency and severity of agricultural drought are increased during the irrigation period where the demand for agricultural water is generated, and reasonable and efficient management of agricultural water for stable water supply is required. As one method to solve the water shortage of agricultural water in an unstructured method, it is necessary to analyze the appropriate supply amount and supply method through simulation from the intake works to the canals organization and paddy field. In this study, irrigation efficiency was analyzed for irrigation systems from April to September over the past three years from the Musu Reservoir located in Jincheon-gun, Chungcheongbuk-do and Pungjeon Reservoir located in Seosan-si, Chungcheongnam-do. SWMM (Storm Water Management Model) was used to collect agricultural water, and irrigation efficiency analysis was conducted using adequacy indicators, and water supply vulnerability. The results of the agricultural water distribution simulation, irrigation efficiency and water supply vulnerability assessment are thought to help the overall understanding of the agricultural water supply and the efficient water management through preliminary analysis of the methods of agricultural water supply in case of drought events.

농업용 저수지 관개 취약성 특성 곡선 산정 (Evaluation of Irrigation Vulnerability Characteristic Curves in Agricultural Reservoir)

  • 남원호;김태곤;최진용;김한중
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.39-44
    • /
    • 2012
  • Water supply capacity and operational capability in agricultural reservoirs are expressed differently in the limited storage due to seasonal and local variation of precipitation. Since agricultural water supply and demand basically assumes the uncertainty of hydrological phenomena, it is necessary to improve probabilistic approach for potential risk assessment of water supply capacity in reservoir for enhanced operational storage management. Here, it was introduced the irrigation vulnerability characteristic curves to represent the water supply capacity corresponding to probability distribution of the water demand from the paddy field and water supply in agricultural reservoir. Irrigation vulnerability probability was formulated using reliability analysis method based on water supply and demand probability distribution. The lower duration of irrigation vulnerability probability defined as the time period requiring intensive water management, and it will be considered to assessment tools as a risk mitigated water supply planning in decision making with a limited reservoir storage.

고신뢰 무선센서네트워크를 이용한 실시간 수질 모니터링 시스템 (Real-time Water Monitoring System for Small Water Supply Facility using High Reliable Wireless Sensor Network)

  • 강호용;장윤선
    • 센서학회지
    • /
    • 제24권5호
    • /
    • pp.331-341
    • /
    • 2015
  • In this paper, real-time water quality monitoring system of small water supply facilities based on IEEE 802.15.4e-2012 DSME MAC and IEEE 802.15.4g-2012 PHY standard is presented, which is capable to acquire for highly reliable water quality information in the wide outdoor areas for effective water quality management of small water quality facilities is distributed in the long distance and remote areas. Previously, Long distance transmission is difficult in most water quality sensor module is using RS-485 protocol. But with this system, even in harsh outdoor environment, it is possible to establish a radio wave sensor in a wide area network, and not only water quality sensor shall be connected to the wireless system, but also wireless integrated management system shall provide more effective way of management of the numerous small water supply facilities spread throughout the community, so that the administrator can remotely monitor the data of water turbidity, pH, residual chlorine in the water-supply, water-level, and generate alarm to cope with risks. The management of small water facilities is done by residents will be very effective to notice water quality information of small water facilities to residents.