• Title/Summary/Keyword: Water Safety

Search Result 4,460, Processing Time 0.034 seconds

Development of an Air-Water Combined Cooling System (공냉-수냉 혼합냉각계통 개발)

  • Kwon, Tae-Soon;Bae, Sung-Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.84-88
    • /
    • 2014
  • A long term passive cooling system is considered as the most important safety feature for the nuclear design after the Fukushima Daiichi nuclear power plant accident in 2011. The conventional active pump driven safety systems are not available during a station Black Out (SBO) accident. The current design requirement on cooling time of the Passive Auxiliarly Feedwater System (PAFS) is about 8 hours only. To meet the 72 hours cooling time, the pool capacity of cooling water tank should be increased as much as 3~4 times larger than that of current water cooling tank. In order to extend the cooling time for 72 hours, a new passive air-water combined cooling system is proposed. This paper provides the feasibility of the combined passive air-water cooling system. The current pool capacity of water cooling system is preserved, and the cooling capability is extended by an additional air cooler.

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.

Corrosion fatigue crack growth behavior of 316LN stainless steel in high-temperature pressurized water

  • Zhang, Ziyu;Tan, Jibo;Wu, Xinqiang;Han, En-Hou;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2977-2981
    • /
    • 2021
  • Corrosion fatigue crack growth (FCG) behavior of 316LN stainless steel was investigated in high-temperature pressurized water at different temperatures, load ratios (R = Kmax/Kmin) and rise times (tR). The environmental assisted effect on FCG rate was observed when both the R and tR exceeded their critical values. The FCG rate showed a linear relation with stress intensity factor range (ΔK) in double logarithmic coordinate. The environmental assisted effect on FCG rate depended on the ΔK and quantitative relations were proposed. Possible mechanisms of environmental assisted FCG rate under different testing conditions are also discussed.

Fundamental study on the simulation of fire using salt-water (Salt-water를 이용한 화재 모사 기초 연구)

  • Kim, Ha-Young;Lee, Tea-Jea;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.84-89
    • /
    • 2010
  • 본 연구에서는 공기를 Fresh-water, 화재를 Salt-water로 치환하여 밀도차에 의한 Salt-water 확산의 화재 모사 적용성을 기초적으로 검증한다. 실험은 Zone model과 Field model의 화재해석 결과 나타난 천장부 확산, 와류 발생, 연기층 하락, 연기층과 공기층의 구분 등의 특징을 분석 기준으로 하며 Salt-water에 Tracer를 첨가하여 PIV(Particle Image Velocity) 분석법을 통해 확산현상에 대해 분석하였다. 결과로 Salt-water의 용해도가 높을수록 천장부 확산, 와류 발생, 연기층 하락, 연기층과 공기층의 구분에 있어 실제 화재와 유사한 것으로 판단되며 최소 15.0%이상의 용해도에서 이와 같은 현상이 뚜렷해지는 것으로 분석되었다. 본 연구를 통해 축소모형 화재 모사시 발열 상태가 아닌 다른 방법으로의 모사가 가능한 것이 증명하였다.

  • PDF

A Study on Improvement Plan on the Standard of Judgment of Electrical Code to Protect Against Electric Shock in the Water (수중감전예방을 위한 전기설비기술기준의 판단기준 개선방안 연구)

  • Kim, Han-Sang;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.33-37
    • /
    • 2006
  • Underwater lighting is installed in water tanks, fountains and pools in waterparks, it has direct contact with water and in case of any electrical failure due to faults from electrical equipment, there is a lot of electrical shock risk. In this paper, we proposed an improvement plan of the standard of judgment of electrical code which is MOCIE (Ministry of Commerce, Industry and Energy) notification by fact finding survey and analysis of the domestic and foreign codes.

Management of Ponding Depth and Discharge Filtration from Paddy Fields for Controlling Non-point Source Pollution (논 비점오염 저감을 위한 담수위 관리와 배출수 여과의 효과 분석)

  • Choi, Yonghun;Kim, Youngjin;Kim, Seounghee;Kim, Minyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.125-130
    • /
    • 2015
  • Field study was carried out to assess the effect of automatic inlet and filtration outlet to reduce non-point source discharge and save agricultural irrigation water from paddy. The comparison of control and treated plots showed that irrigation water was saved up to 58 mm and discharge water was reduced up to 110 mm. The filtration outlet improved the discharge water quality for SS, COD, TN and TP up to 60.1 %, 0.1 %, 4.5 %, and 26.0 %, respectively. Overall, the findings of this study indicated that non-point source pollution discharged from paddy fields where automatic inlet and filtration outlet were installed could be reduced 266.3 kg/ha/yr in SS, 10.3 kg/ha/yr in COD, 1.22 kg/ha/yr in TN, and 0.10 kg/ha/yr in TP, respectively. This clearly showed that the automatic inlet and filtration outlet are effective management method for saving of agricultural water and protecting water environment.

A Comparative Study on the Energy Efficiency due to the Capacity of Gas Boiler (가스온수가열기의 용량에 따른 에너지효율성 비교 연구)

  • Kim, Seong Jung;Woo, In sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.229-234
    • /
    • 2015
  • Depending on the living styles, the types of energy consumed by households have changed, and the consumption has increased rapidly. Consequently, those have led to environmental issues, such as exhaustion of energy and the climate changes. As one of solutions to such issues, energy efficiency can be approached. Therefore, in this study, the gas water heater(115S type Rheem products) that made in Germany and obtain hot water using gas as a heat source is selected. a $1.0m^3$ water tank with a 6kW electronic heater is installed and a water temperature and pressure is maintain constantly also thermometer is injected. Two of gas meter, one of pressure regulator and three of time measurement devices are installed in a combustion facility and fuelling facility with a magnet valve so it can observe and record combustion reactions. Quantity of hot water that heated by boiler is recorded using a quantity measurement tank, and have been heated by the boiler have been to record and measure the amount and utilized the data acquired through measurement of all factors that are applied to acquire hot water in order to calculate the use rate of final energy. In conclusion, this researcher drew the economic strong points of the hot water generated by gas.