• Title/Summary/Keyword: Water Resources Operation

Search Result 921, Processing Time 0.029 seconds

Standard Metadata Design for Linkage and Utilization of Damage Prediction Maps (풍수해 피해예측지도 연계·활용을 위한 표준 메타데이터 설계)

  • SEO, Kang-Hyeon;HWANG, Eui-Ho;BAECK, Seung-Hyub;LIM, So-Mang;CHAE, Hyo-Sok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.52-66
    • /
    • 2017
  • This study aims at designing standard metadata that can be incorporated for advanced utilization of damage prediction maps, and thereby constructing the standard meta-information management prototype system on the basis of the proposed design. Based on the ISO/TC 211 19115 international standard, which is considered as the most widely used standard (as per the results of a domestic and foreign metadata standard survey), the designing process for the standard metadata was established and the metadata was categorized into nine classes. Additionally, based on the output of the standard metadata design process, a standard meta-information management prototype system, capable of checking and downloading meta-property information, was constructed using the JAVASCRIPT language. By incorporating the obtained results, it is possible to maintain the quality of the constructed damage prediction map by establishing a standardized damage prediction map database. Furthermore, disaster response can be actuated through the provision and management of data for effective operation of the proposed damage prediction system.

A Study on the Appropriate Size of Large Rainwater Utilizing Facilities and Estimation of Agricultural Water Availability in Namwon eup, Jeju Island (제주도 남원읍지역 대용량 빗물이용시설의 적정규모 및 농업용수 공급 가능량 산정 연구)

  • Kim, Minchul;Park, Wonbae;Kang, Bongrae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.84-94
    • /
    • 2020
  • Jeju Island is seeking reliable ways to secure alternative water resources using rainwater in order to conserve and manage its groundwater as sustainable water resources. The purpose of this study is to investigate the rainwater storage capability of small-size storage facilities installed at farmhouses in Uigwi and Wimi of Namwon-eup region. The rainwater outflows from the storage facilities in rain events were analyzed. The appropriate size of rainwater utilizing facilities are suggested to be about 5,800 ㎥ in Uigwi area and 4,900 ㎥ in Wimi area based on the calculation from the rainfall frequency and runoff amounts. If those facilities are put into operation in Uigwi and Wimi area, it is estimated approximately 32.3 and 11.5% of total agricultural water can be supplied by the facilities. Wimi area showed low rainwater usage because of less number of facilities relative to the size of farm areas and less intensive underground water usage. It is analyzed that more than 55% of agricultural water can be supplied by rainwater if 70 facilities without the rainwater facilities are connected to the rainwater utilizing facilities.

The Monthly Water Supply Reliability Indexes in the Parallel Reservoir System

  • Park, Ki-Bum;Kim, Sung-Won;Lee, Yeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1612-1615
    • /
    • 2009
  • Water supply reliability indexes (WSRI) is estimated for assessment of water supply capacity in the downstream for parallel reservoir system in Nakdong River, South Korea, using allocation rule (AR) according to the water supply capacity of each reservoir and the characteristic of parallel reservoir system. The result of the analyzing parallel reservoir system for Andong and Imha reservoir in Nakdong River does not include evidences available enough to decide whether the results of water supply analysis are excellent in the current reliability evaluation or not. However, AR (C) shows a good result in the water supply capacity for each reservoir based on the connected operation system and the total water supply capacity at the control point of downstream by the average water supply capacity and possible range of water supply capacity suggested by this study. The average water supply capacity is analyzed by the reliability of monthly average water supply capacity. Furthermore, the possible range of water supply capacity is estimated by the standard deviation when water deficit occurs. Therefore, AR (C) is useful to establish and estimate the planning water supply capacity according to the monthly water supply condition and the possible range of water supply capacity when the water supply capacity deficit occurs, South Korea.

  • PDF

Assessment of water supply reliability under climate stress scenarios (기후 스트레스 시나리오에 따른 국내 다목적댐 이수안전도 평가)

  • Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.409-419
    • /
    • 2024
  • Climate change is already impacting sustainable water resource management. The influence of climate change on water supply from reservoirs has been generally assessed using climate change scenarios generated based on global climate models. However, inherent uncertainties exist due to the limitations of estimating climate change by assuming IPCC carbon emission scenarios. The decision scaling approach was applied to mitigate these issues in this study focusing on four reservoir watersheds: Chungju, Yongdam, Hapcheon, and Seomjingang reservoirs. The reservoir water supply reliablity was analyzed by combining the rainfall-runoff model (IHACRES) and the reservoir operation model based on HEC-ResSim. Water supply reliability analysis was aimed at ensuring the stable operation of dams, and its results ccould be utilized to develop either structural or non-structural water supply plans. Therefore, in this study, we aimed to assess potential risks that might arise during the operation of reserviors under various climate conditions. Using observed precipitation and temperature from 1995 to 2014, 49 climate stress scenarios were developed (7 precipitation scenarios based on quantiles and 7 temperature scenarios ranging from 0℃ to 6℃ at 1℃ intervals). Our study demonstrated that despite an increase in flood season precipitation leading to an increase in reservoir discharge, it had a greater impact on sustainable water management compared to the increase in non-flood season precipitation. Furthermore, in scenarios combining rainfall and temperature, the reliability of reservoir water supply showed greater variations than the sum of individual reliability changes in rainfall and temperature scenarios. This difference was attributed to the opposing effects of decreased and increased precipitation, each causing limitations in water and energy-limited evapotranspiration. These results were expected to enhance the efficiency of reservoir operation.

Prediction of reservoir sedimentation: A case study of Pleikrong Reservoir

  • Thu Hien Nguyen;XuanKhanh Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.36-36
    • /
    • 2023
  • Sedimentation is a natural process that occurs in all reservoirs. Sedimentation problem reduces the storage capacity of the reservoir and limits its ability to provide water for various uses, such as irrigation, hydropower generation, and flood control. Therefore, predicting reservoir sedimentation is important for ensuring the efficient operation and sedimentation management of a reservoir and . In this study, the HECRAS model was applied to predict longitudinal distribution of deposited sediment in the Pleikrong reservoir to 2050. Different scenarios was considered: (i) no climate change, (ii) climate change (under two emissions scenarios, RCP4.5 and RCP8.5), and (iii) climate change and land use change (followed land use planning of the watershed). The computation results with different scenarios were analyses and compared. The results show that the reservoir reduced storage volume's rate and sedimentation proceed toward to the dam in the case of climate change is faster than in the case of no climate change. Analyses also indicates that following the land used planning could also improve the long-term problem of the reservoir sedimentation. The outcomes of this study will be helpful for a sustainable plan of sediment management for the Pleikrong reservoir.

  • PDF

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Evaluation of Eco-Hydrological Changes in the Geum River Considering Dam Operations: I. Flow Regime Change Analysis (댐 운영을 고려한 금강의 생태.수문학적 변화 평가 : I. 유황변화 분석)

  • Ko, Ick-Hwan;Kim, Jeong-Kon;Park, Sang-Young
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this study, based on the major activities which might have affected the ecological system of the Geum River, a conceptual model was proposed to guide scenario development for the eco-hydrological river evaluation. Also, an analysis method employing a set of models consisting, with other supporting programs, of KModSim for watershed network analysis and RAP for ecosystem analysis was developed for eco-hydrological river assessment. Then, hydrological analyses with various scenarios were conducted to examine the flow regime changes expected from the construction and operation of the Youngdam Multipurpose Dam (YMD) and Daecheong Multipurpose Dam (DMD) in the Geum River basin. The results indicated that the "Percentile 10" values for 10% exceeding time were decreased by 20.5% and 8.0% at Sutong downstream of YMD and Gongju downstream of DMD, respectively, while "Percentile 90" values for 90% exceeding time were increased by 56.3% and 340.8% at Sutong and Gongju, respectively, resulting in the reduction of the high flow variability typical for unregulated rivers in Korea. The results of eco-hydrological analyses will be presented in the following papers.

Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods (농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.

Assessing the Impact of Virtual Water Trade on Water and Land Security

  • Odey, Golden;Adelodun, Bashir;Adeyemi, Khalid;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.161-161
    • /
    • 2022
  • Despite the impressive development of water infrastructure and management in recent decades, Korea still faces a number of threats to water security owing to such factors as climate change. This puts the country at the top spot amongst the Organization for Economic Co-operation and Development (OECD) countries in terms of water stress. It is suggested that increasing food imports and decreasing domestic food production can contribute to water and land savings and in extension, to increased water and land security. This study therefore aimed at analyzing the impact of virtual water import through food trade on the water and land savings in Korea. It was concluded that over the period 2000 - 2017, significant amounts of national water and land was saved through the importation of major upland crops. In addition, we estimated the virtual water trade (VWT) that refers to the trade of water embedded in food products. The results showed a significant increase in the amount of virtual water traded over the study period.

  • PDF

A Study on Releases Determination Scheme for a Forecasted Flood (예측홍수의 방류량 결정방안에 관한 연구)

  • Kwon, Oh-Ig;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.257-268
    • /
    • 1997
  • Reservoir operators and managers need to present a rational basis of determining releases for a flood event. This study divides a forecasted flood hydrograph by two parts on the basis of non-damaging discharge, which consists of one part con,trolled by non-damaging discharge and another controlled by using flood control storage of the reservoir. In case of using flood control storage, a new reservoir operation method. called TRF (Transformed Reservoir Flood) ROM, is suggested for the operating rules during a flood to consider the reservoir security as well as the operational efficiency. This paper presents an application of the methodology to the operation of a single multipurpose reservoir at the Taechong Dam during flood and the results analyzed.alyzed.

  • PDF