• Title/Summary/Keyword: Water Removal Methods

Search Result 387, Processing Time 0.027 seconds

Study on the Fabrication of the Boron Remover (붕소제거제의 제조에 관한 연구)

  • Choi, kyu-man;Lee, yun-sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.97-102
    • /
    • 2009
  • The use of deep water as drinking water is greatly limited of significant concentration of boron in sea water. Boron is reported to be toxic for human and plants. Some of possible methods are available to remove boron. The polymeric resins were synthesized to remove the boron from the sea water. The resin was characterized with IR analysis and the morphology was discussed with SEM images. To assess boron removal capacity of the resin, it was distributed in three different bead size i.e., 0.25mm, 0.5mm and 1.0mm. The removal behavior of this resin was examined under the batch experiments.

  • PDF

Progresses in membrane and advanced oxidation processes for water treatment

  • Khulbe, K.C.;Feng, C.Y.;Matsuura, T.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.181-200
    • /
    • 2012
  • At present water crisis is not an issue of scarcity, but of access. There is a growing recognition of the need for increased access to clean water (drinkable, agricultural, industrial use). An encouraging number of innovative technologies, systems, components, processes are emerging for water-treatment, including new filtration and disinfectant technologies, and removal of organics from water. In the past decade many methods have been developed. The most important membrane-based water technologies include reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration. Beside membrane based water-treatment processes, other techniques such as advanced oxidation process (AOP) have also been developed. Some unconventional water treatment technology such as magnetic treatment is also being developed.

Water Treatment Using Constructed Wetlands and Research Perspectives in Korea (인공습지를 이용한 수처리 효율 및 향후 연구제언)

  • Gang, Ho-Jeong;Song, Geun-Ye
    • Journal of Wetlands Research
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2004
  • More than 1000 natural and constructed wetlands have been used to improve water quality. The general results showed that the highest removal efficiency was 84% for BOD and the lowest one was 48% for total nitrogen concentration. In addition, total phosphous removal efficiency was 67%, and the removal efficiencies are related to inflow loading. Researches donducted in Korea have focused on input-output mass balance and uptake by aquatic plant. As such little information if available about complex processes regulating water quality and role of microbes. Therefore, to determine the optimal design for construct, and methods to operate constructed wetland, researches about complex mechanisms of contaminant removal and interdisciplinary researches are necessary.

  • PDF

Changes in Water Content Affect the Post-Milling Quality of Paddy Rice Stored at Low Temperature

  • Kim, Young-Keun;Hong, Seong-Gi;Lee, Sun-Ho;Park, Jong-Ryul;Choe, Jung-Seob
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.336-344
    • /
    • 2014
  • Purpose: In this study, the effect of milling on paddy rice stored at low temperature, the changes in grain temperature of bulk storage bags exposed at room temperature, the post-milling water content of paddy rice, the whiteness of rice, and the rate of pest incidence were investigated and data were analyzed. Methods: Changes in temperature inside the bulk storage bags kept at low temperature and grain temperature after exposure to room temperature were measured. Experiments were conducted for identifying the reasons of post-milling quality changes in paddy rice stored at low temperature. Results: It was determined that a short-term increase of water content in paddy rice was directly related to surface condensation, and that rice should be milled at least 72 h after removal from low-temperature storage, in order to completely eliminate surface condensation of paddy rice kept in bulk storage bags. It was observed that post-milling quality of rice changed, but water content was maintained at high levels for more than 18 d in rice that was milled when condensation occurred, regardless of paper or vinyl packaging. Rice whiteness rapidly decreased in rice that was milled when condensation occurred, regardless of packaging, while rice that was milled 72 h or more after removal from low temperature storage did not show any significant changes in whiteness. No pest incidence was observed up to 12 d after removal from low temperature storage, regardless of packaging. Starting at 18 d, after removal from low temperature storage, rice that was milled when condensation occurred, was affected by pests, while 24 d after removal from low temperature storage, all portions of rice were affected by pests. Conclusions: Our results suggest that changes in post-milling quality of rice could be significantly reduced by exposing paddy rice to room temperature for at least 72 h before milling, in order to allow the increase of grain temperature and prevent surface condensation.

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.141-156
    • /
    • 1996
  • For ultra-pure water, the removal of various impirities is required, and the requirement level is rising year by year. To cope with this problem, various removing technologies and system technologies have been developed and the introduction of new materials for the piping, etc. to form the system have been positively made. For the element technologies to be used for ultra-pure water production, their range will be expanded from the technological and economic viewpoints. Therefore, it is absolutely necessary to develop trace analysis evaluation technologies for ultra-pure water. Especially to raise the analytical level of heavy metals and organic substances is important. It is also important to establish individual analysis methods of organic substances. It is expected that the analytical methods will be established and new treating methods will be put to practical use in the near future.

  • PDF

Water Quality Variation and Removal Characteristics of Poliovirus by Biological Activated Carbon (BAC) and Ozone Treatment Process in Nakdong River. (낙동강 원수의 생물활성탄 및 오존처리공정에 따른 수질 변화 및 폴리오바이러스의 제거특성)

  • Jung Eun-Young;Park Hong-Ki;Lee You-Jung;Jung Jong-moon;Jung Mi-Eun;Hong Yong-Ki;Jang Kyoung-Lib
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.696-702
    • /
    • 2005
  • Ozonation is a disinfection technique of harmful mi-crobes commonly used in the treatment of drinking water. And Biological Activated Carbon (BAC) treatment also provides numerous benefits for drinking water utilities, including removal of micro- pollutants, improved treatment processes. The multiful-stage ozonation and BAC play roles as effective methods for removing several materials in raw water. Water quality variation in Nak dong river and the removal efficiency of viruses by ozonation-BAC process were investigated on pilot scale. During the period of survey, most of water quality parameters including $NH_{4}^{+}-N$ were highly improved after passing through the BAC. The removal efficiency of poliovirus type III in water treatment process using pilot-plant,$ 99.6\% $ of viruses were removed by pre-ozonation, sedimentation and sand filteration process, $ 100\% $ were removed after in BAC filteration step. In the removal survey of viruses by ozonation, ap-proximately $ 61.1\% $ or polioviruses were inactivated by ozone of 0.4 mg/l within 5 min. and $ 100\% $ were inactivated by ozone of 0.8 mg/l over 10 min.

Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments (자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가)

  • Oh, Youn Soo;Park, Hyun Sung;Kim, Dong Kwan;Lee, Jin Soo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.235-244
    • /
    • 2020
  • Copper (Cu), one of the main contaminants in the mine drainage from the closed mine area, needs to be removed before exposed to environment because of its toxicity even in the low concentration. In this study, passive treatment based field pilot experiments using limestone and compost media were conducted during 9 months for enhancing Cu removal efficiency of the mine water treatment facility of S mine located in Goseong, Gyeongsangnam-do in South Korea. The pH increase and Cu removal efficiency showed high value at Successive Alkalinity Producing System ( SAPS) > Reducing and Alkalinity Producing System (RAPS) > limestone reactor in a sequence. The compost media using in SAPS and RAPS contributed to raise pH by organic material decomposition with generating alkalinity, thus, Cu removal efficiency increased. Also, experimental results showed that Cu removal efficiency was proportional to pH increase, meaning that pH increase is the main mechanism for Cu removal. Moreover, Sulfate Reduction Bacteria (SRB) was identified to be most activated in SAPS. It is inferred that the sulfate reduction reaction also contributed to Cu removal. This study has the site significance in that the experiments were conducted at the place where the mine water generates. In the future, the results will be useful to select the more effective reactive media used in the treatment facility, which is most appropriate to remediate mine water from the S mine.

Removal Rate of Residual Pesticides in Perilla Leaves with Various Washing Methods (수세 방법에 따른 깻잎의 잔류농약 제거율 연구)

  • Lee, Jong-Mee;Lee, Hye-Ran;Nam, Sang-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.586-590
    • /
    • 2003
  • Removal rates of residual organic phosphorous pesticides (chlorpyrifos-methyl and fenitrothion) in Perilla leaves by various washing methods were determined. The removal rates using stagnant tap water were 20.05 and 17.70% for chlorpyrifos-methyl and fenitrothion, whereas 44.28 and 39.10% using flowing tap water, and 19.14 and 15.43% using activated carbon-added stagnant tap water, respectively. Activated carbon-added flowing stagnant tap water removed 25.29 and 15.43% of chlorpyrifos-methyl and fenitrothion, and removal rates were 53.51 and 50.62% with alkaline solution and 30.25 and 28.09% with acidic solution, respectively. With neutral detergent solution, removal rates were 81.52 and 76.56% for chlorpyrifos-methyl and fenitrothion, respectively. Results revealed washing method using neutral detergent solution was most effective for removing residual pesticides.

DEVELOPMENT OF ADSORBENT USING BYPRODUCTS FROM KOREAN MEDICINE FOR REMOVING HEAVY METALS

  • Kim, S.W.;Lim, J.L.
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Most of the herb residue producing from oriental medical clinics(OMC) and hospitals(OMH) is wasted in Korea. To develop of adsorbent for removing heavy metal from wastewater, the various pre-treatment methods of the herb residue were evaluated by potentiometric titration, Freundlich isotherm adsorption test and the kinetic adsorption test. The herb residue was pre-treated for increasing the adsorption capacity by cleaning with distilled water, 0.1 N HCl and 0.1 N NaOH and by heating at $370^{\circ}C$ for 30 min. It showed a typical weak acid-weak base titration curve and a short pH break like commercial activated carbon during photentiometric titration of pre-treated herb residue. The log-log plots in the Freundlich isotherm test were linear on the herb residue pre-treated with NaOH or HCl like commercial activated carbon. The adsorption capacity(qe) in the Freundlich isotherm test for $Cr^{6+}$ was 1.5 times higher in the pre-treated herb residue with HCl than in activated carbon. On the other hand the herb residue pre-treated with NaOH showed the good adsorption capacities for $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ even though those adsorption capacities were lower than that of activated carbon. In kinetic test, most of heavy metals removed within the first 10 min of contact and then approached to equilibrium with increasing contact time. The removal rate of heavy metals increased with an increase of the amount of adsorbent. Likewise, the removal rates of heavy metals were higher in the herb residue pre-treated with NaOH than in that pre-treated with HCl. The adsorption preference of herb residues pre-treated with NaOH or HCl was $Pb^{2+}>Cu^{2+}$ or $Cd^{2+}>Cr^{6+}$ in the order. Conclusively, the herb residue can be used as an alternative adsorbent for the removal of heavy metals depending on pr-treatment methods.