• 제목/요약/키워드: Water Remediation

검색결과 413건 처리시간 0.036초

불포화 자연토의 포화도에 따른 동전기 정화특성에 관한 실험적 연구

  • 김병일;김익현;김기년;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.302-305
    • /
    • 2003
  • The electrokinetic remediation tests for natural soil contaminated by lead are performed on unsaturated conditions, in which the degree of saturation is controlled through the changes in water content and the constant unit weight. At the degree of saturation of 70% the small acid range and electrical potential is developed. The changes in the water content are little above the saturation of 90%. But it is increased by 1.7 times at the degree of saturation of 70%. Finally, the efficiency of extraction is improved at 70% than 100%.

  • PDF

마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가 (Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment)

  • 오승택;오참뜻;김국진;석소희;김철경;임진환;유재봉;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.44-50
    • /
    • 2012
  • A new type of chemical oxidation technology utilizing micro bubble ozone oxidizer and a pneumatic fracturing equipment was developed to enhance field applicability of a traditional chemical oxidation technology using hydrogen peroxide as an oxidizer for in-situ soil remediation. To find an efficient way to dissolve gaseous ozone into hydrogen peroxide, ozone was injected into water as micro bubble form then dissolved ozone concentration and its duration time were measured compared to those of simple aeration of gaseous ozone. As a result, dissolved ozone concentration in water increased by 31% (1.6 ppm ${\rightarrow}$ 2.1 ppm) and elapsed time for which maximum ozone concentration decreased by half lengthened from 9 min to 33 min. When the developed pneumatic fracturing technology was applied in sandy loam, cracks were developed and grown in soil for 5~30 seconds so that the radius of influence got longer by 71% from 392 cm to 671 cm. The remediation system using the micro bubble ozone oxidizer and the pneumatic fracturing equipment for field application was made and demonstrated its remediation efficiency at petroleum contaminated site. The system showed enhanced remediation capacity than the traditional chemical oxidation technology using hydrogen peroxide with reduced remediation time by about 33%.

Chlamydomonas reinhardtii 이용한 명반응 증식 특성 및 암반응에서 수소 생산 (Multiplication conditions in light reaction and hydrogen production in dark fermentation using Chlamydomonas reinhardtii)

  • 김지성;박호일;김동건;공경택;조경숙;박대원
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.17-24
    • /
    • 2005
  • We experimented on growth in light and production of hydrogen and organic matters in dark fermentation by using C. reinhardtii. In the light, growth rate of C. reinhardtii following $CO_2$ fixation was proportional to consumption rate of nitrogen source. And the starch in cell was accumulated more when the period of culture was lengthened more. But the accumulation rate of starch in cell was decreased when the growth rate of cell become dull. In the dark fermentation, the production volume and production rate of hydrogen were the highest value in the mid exponential state among other states. The utilization efficiency of substrate was better in the early exponential state than other states. In production of organic matters, acetic acid didn't change remarkably and ethanol showed the highest value in early exponential state.

원유오염토양의 아임계수를 통한 정화 가능성 평가 (Assessment of Potential Utility of Subcritical Water for Remediation of Crude Oil Contaminated Soil)

  • 정연재;조영태;;박성재;정선국;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.48-56
    • /
    • 2017
  • Although various methods have been investigated for treatment of crude oil contaminated soil, more researches are still required to preserve soil environment. This study investigated the potential utility of subcritical water in remediation of crude oil contaminated soil under various experimental conditions including temperature ($150-300^{\circ}C$), flow rate (1.0-2.0 mL/min) and extraction time (60-120 min). The removal rate of crude oil gradually increased with increasing temperature and time. After treatment at $200^{\circ}C$ and $300^{\circ}C$ for 60 min, the remaining concentration of crude oil met the Kuwait standard clean-up level (10,000 mg/kg) and the Korean standard level (2,000 mg/kg), respectively. The removal efficiency of crude oil increased from 77.8% to 88.4% with increasing extraction time from 60 to 120 min at $250^{\circ}C$. A decreasing rate of oil removal was observed as flow rate increased, possibly due to channeling flow occurred within the soil body at higher flow rate condition. Overall, the results revealed that subcritical water extraction process could be feasible for remediation of crude oil contaminated soil, and the relative effect of parameters on the oil removal was in the order of temperature > time > flow rate.

항공유 오염 지역에서 주입정과 회수트렌치를 이용한 원위치 토양세정법 현장 적용 (A Field Study of Surfactant Enhanced In-Situ Remediation using Injection Wells and Recovery Trench at a Jet Oil Contaminated Site)

  • 이규상;김양빈;장재선;엄재연;송성호;김을영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권1호
    • /
    • pp.13-21
    • /
    • 2012
  • This study reports a surfactant-enhanced in-situ remediation treatment at a test site which is located in a hilly terrain. The leakage oils from a storage tank situated on the top of the hill contaminated soils and groundwater in the lower elevation. Sixteen vertical injection wells (11 m deep) were installed at the top of the hill to introduce 0.1-0.5 vol.% of non-ionic Tween-80 surfactant. The contaminated area that required remediation treatment was about $1,650\;m^2$. Two cycles of injecting surfactant solution followed by water were repeated over approximately 7.5 months: first cycle with 0.5 month of surfactant injection followed by 3 months of water injection, and second cycle with 1 month of surfactant followed by 3 months of water injection. The seasonal fluctuation in groundwater table was also considered in the selection of periods for surfactant and water injection. The results showed that the initial Total Petroleum Hydrocarbon (TPH) concentration of 1,041 mg/kg (maximum 3,605 mg/kg) was reduced significantly down to 76.6 mg/kg in average. After 2nd surfactant injection process finished, average TPH concentration of soils was reduced to 7.5% compared to initial concentration. Also, average BTEX concentration of soils was reduced to 10.8%. This resultes show that the surfactant enhanced in-situ remediation processes can be applicable to LNAPL contaminated site in field scale.

계면활성제 용액을 이용한 소수성 유기화합물로 오염된 토양의 정화 (Remediation for Hydrophobic Organic Compound Contaminated Soils by Surfactant Solution)

  • 윤현석;박민균;권오정;박준범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.543-550
    • /
    • 1999
  • Hazardous substances produced from industrial sectors have caused serious contamination of soils and groundwater. The hydrophobic organic compounds in the subsurface are hard to be decomposed, and as they soil on the soil or last as a NAPL they might contaminate the groundwater for a long time. Although we recognize the danger of contaminated subsurface, very little was known about the effective remediation technique. This paper focuses on the remediation of the p-Cresol which contaminated subsurface by applying the surfactant-enhanced description technique. Sorption characteristics of soils and organic compounds are studied, and the applications of surfactant solution are studied for effective rededication. The results from this study could be used as some data for surfactant-enhanced rededication. The flexible-wall permeameter tests are performed in which in-situ remediation is simulated. Results show that triton X-100 at 2% solution disrobes p-Cresol 1.7 times as much as water description in the flexible-wall permeameter tests.

  • PDF

생물학적 하·폐수처리 공정에서 생물촉진제 첨가의 영향 (Effects of Bio-stimulant Addition on Biological Wastewater Treatment Processes)

  • 이석헌;정진영;박기영
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.398-402
    • /
    • 2005
  • The enzyme Xeronine was investigated as a microbial activating substance in biological wastewater treatment processes. Xeronine as bio-stimulant was injected in the anaerobic sludge and the activated sludge treating wastewater in order to examine the effect of hidden benefits. Bio-stimulant did not show significant improvement of anaerobic treatablity. In the aerobic system, higher bio-stimulant dose condition resulted in slightly more removal of nitrogen and phosphorus. Floc aggregation and zone settling velocity as solid-liquid separation factors in activated sludge systems was enhanced by bio-stimulant. Effects of bio-stimulants injection on improvement of water quality and microbial activity did not clear in terms of normal operation conditions.

응집·한외여과 공정에서 응집조건 결정에 관한 연구 (Effect of Coagulation Condition on Coagulation/Ultrafiltration Membrane Process)

  • 문성용;이상협;김승현;문병현
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.379-384
    • /
    • 2005
  • In this research, coagulation was employed as the pretreatment for membrane process. The effective coagulation conditions were decided after the discussion of different coagulant doses and mixing conditions, etc. Raw water was taken from Nakdong River. The best operation occurred when G value was $230s^{-1}$ and the slow mixing lasted around 5 minutes at G value was $23s^{-1}$. To investigate the optimum coagulant dosage, the optimum organics removal was target as organic removal reduces membrane fouling effectively than particle removal. This result indicated that organics are more important causes than turbidity for membrane fouling. However, turbidity becomes an important factor after certain amount of organic matters is removed.

수질유해물질에 대한 수질환경기준 설정체계 (Framework for Deriving Water Quality Criteria of Toxic Substances)

  • 정윤철;고대현
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.305-313
    • /
    • 2005
  • In these days, water environment is getting threatened by a variety of toxic pollutants discharged from industries. However, environmental standards and regulations in Korea may be in straitened circumstances to protect the water environment from it. Therefore, the purpose of this review is to compare the management state of the toxic substances in water environment and to present the framework for deriving water quality criteria in USA and Japan. To conserve the water environment from the toxic pollutants more efficiently, the following considerations could be suggested in standards and regulation in Korea. Firstly, there should be consistency of regulated pollutants in drinking water quality standard, water quality standards and permissible wastewater discharge standards. Secondly, in case of deriving the water quality standards, it is required to consider the conservation of the aquatic ecosystem as well as the protection of human health. Finally, it is indispensable to make risk-based approach in management of toxic pollutants in water environment.