• Title/Summary/Keyword: Water Region

Search Result 3,268, Processing Time 0.037 seconds

Two-dimensional unsteady flow analysis with a five region turbulence models for a simple pipeline system (단순한 관망체계에서 5영역 난류 모형을 이용한 2차원 부정류 흐름 해석 연구)

  • Kim, Hyun Jun;Kim, Sangh Hyun;Baek, Da Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.971-976
    • /
    • 2018
  • An accurate analysis of pipeline transient is important for proper management and operation of a water distribution systems. The computational accuracy and its cost are two distinct components for unsteady flow analysis model, which can be strength and weakness of three-dimensional model and one-dimensional model, respectively. In this study, we used two-dimensional unsteady flow model with Five-Region Turbulence model (FRTM) with the implementation of interaction between liquid and air Since FRTM has an empirical component to be determined, we explored the response feature of two-dimensional flow model. The relationship between friction behaviour and the variation of undetermined parameter was configured through the comparison between numerical simulations and experimental results.

Pressure Pulsation Characteristics of a Model Pump-turbine Operating in the S-shaped Region: CFD Simulations

  • Xia, Linsheng;Cheng, Yongguang;Cai, Fang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • The most detrimental pressure pulsations in high-head pump-turbines is caused by the rotor-stator interaction (RSI) between the guide vanes and runner blades. When the pump-turbine operates in the S-shaped region of the characteristic curves, the deteriorative flow structures may significantly strengthen RSI, causing larger pressure pulsations and stronger vibration with an increased risk of mechanical failure. CFD simulations were carried out to analyze the impacts of flow evolution on the pressure pulsations in the S-shaped region of a model pump-turbine. The results show that the reverse flow vortex structures (RFVS) at the runner inlet have regular development and transition patterns when discharge reduces from the best efficiency point (BEP). The RFVS first occur at the hub side, and then shift to the mid-span near the no-load point, which cause the strongest pressure pulsations. The locally distributed RFVS at hub side enhance the local RSI and makes the pressure fluctuations at the corresponding sections stronger than those at the rest sections along the spanwise direction. Under the condition of RFVS at the mid-span, the smaller flow rate make the smaller difference of pressure pulsation amplitudes in the spanwise direction. Moreover, the rotating stall, rotating at 35.7%-62.5% of the runner rotational frequency, make the low frequency components of pressure pulsations distribute unevenly along the circumference in the vaneless space. However, it have little influence on the distributions of high components.

The Lichen Flora of Oases of Continental Antarctic, and the Ecological Adaptations of Antarctic Lichens

  • Andreev, Mikhail
    • 한국균학회소식:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-28
    • /
    • 2006
  • Author have studies lichen flora of the most important ice-free areas of Continental Antarctic: Bunger Hills, and the vicinity of Prudz Bay (Larsemann Hills, and Radok Lake in Prince Charles Mountains). Totally 44 lichen species from 22 genera were reported for Bunger Hills and 50 lichen species from 22 genera and 10 families: Acarosporaceae, Lecanoraceae, Lecideaceae, Parmeliaceae, Pertusariaceae, Physciaceae, Rhizocarpaceae, Stereocaulaceae, Theloschistaceae, and Umbilicariaceaewere reported for the Prudz Bay Region. 20 lichen species were found in the region for the first time. Phytogeographic analysis indicated a relatively high proportion of species with bipolar distribution - about 50% of recorded lichen species. About 30% of lichens normally don't extend into maritime zone occurring in continental Antarctic only. The most common lichen families in the region are Buelliaceae, Lecanoraceae and Teloschistaceae. The water supply and not a temperature is the critical factor for lichens in the Continental Antarctic. Moisture appears to be supplied for lichens not only from snow-melt water but mainly from air. In Maritime Antarctic, due to high air humidity macrolichens form communities everywhere (Himantormia, Usnea and Umbilicaria). In oases of Continental Antarctic extensive sites are lacking in lichen cover, even if the ground is normally snow free. Lichens occur at humid sites with moisture which were brought by winds over the ice cap and poorly developed or absent in dry areas. Of particular significance for lichens are substrate characteristics, animals influence and salinity brought by wind in coastal areas. Most rich lichen vegetation developed in oases around nests of snow petrels, where the melt water is enriched by nutrients. In contrast, the most pure vegetation is on mobile sand and gravel and in salted coastal habitats.

  • PDF

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

A Study on Vibration Characteristics in Water Tank Structure (접수탱크구조의 진동특성에 관한 연구)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

Dynamic Simulation of Storm Surge and Storm Water-Combine Inundation on the Jeju Coastal Area (폭풍 해일 및 폭풍우로 인한 제주 해안역에서의 동역학적 범람 모의)

  • Lee, Jung-Lyul;Lee, Byung-Gul;Lee, Joo-Yong;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1945-1949
    • /
    • 2006
  • A storm-induced coastal inundation model (SICIM) is presented to simulate the flood event during typhoon passage that often results in significant rise in sea-level heights especially in the upstream region of the basin. The SICIM is a GIS-based distributed hydrodynamic model, both storm surge and storm water inundations are taken into account. The spatial and temporal distribution of the storm water level and flux are calculated. The model was applied to Jeju Island since it has an isolated watershed that is easy to handle as a first step of model application. Another reason is that it is surrounded by coastal area exposed to storm surge inundation. The model is still advancing and will be the framework of a predictive early inundation warning system.

  • PDF

Development of Open Water Management Program(OWMP) for Water Management Automation System with Open Architecture (물관리자동화시스템을 위한 개방형 운영 프로그램 개발)

  • Kim, Sun-Joo;Kim, Pill-Sik;Yoon, Chan-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.84-88
    • /
    • 2001
  • This study presents an application of object-oriented methodology for Open Water Management Program(OWMP). Accordingly, OWMP provides a high degree of reliability which allows modification of parameters by change of region or time to be possible OWMP consists of Data Base Management System(DBMS) and Model System. DBMS make it possible to analyze data related with planning water schedule and establishing database. Model System calculates reservoir inflow, reservoir effluent and basin water demand. A operator decides the reservoir operation with results of Model System and DBMS. OWMP could be adapted to the planning and decision for saving water.

  • PDF

Attenuation Characteristics of the Buried Steel Water Pipes (지하매설 유체함입 강파이프의 감쇠특성 규명)

  • Park, K.J.;Kang, W.S.;Kim, Y.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The attenuation of the fundamental non-torsional modes that propagate down buried steel water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within pipe. The established acoustic technique used to locate leaks in buried steel water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode.

  • PDF

Objective Measurement of Water Repellency of Fabric Using Image Analysis (I) - Methodology of Image Processing -

  • Jeong Young Jin;Jang Jinho
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.162-168
    • /
    • 2005
  • A methodology for the objective evaluation of water repellency is studied using image analysis of the sprayed pattern on woven fabrics according to a standard spray test (AATCC Test Method 22-2001). The wet area ratio obtained from the spray standard test ranking is found to be exponentially related with its water repellency rating. Mean filtering is used to remove the effect of weave texture and the transmitted light through interyarn spaces. The ring frame of the instrument and wet region are recognized using Otsu thresholding technique. And Hough transform and outline operation are used to obtain the size and position of the ring frame. The objective assessment of the water repellency using image processing can reduce unnecessary confusion in the subjective determination of the water repellency.

The Steady Drift Force and Moment on a Floating Body in Water of Finite Depth (유한수심에 놓인 부유체에 작용하는 시간평균 표류력 및 표류 모우먼트)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 1987
  • The second-order steady horizontal force and vertical moment are derived for a freely-floating body in water of finite depth. Momentum relations are used in terms of the Kochin function in the fluid region far from the body. The general results look very similar to those for deep water. The water depth is formally reflected in terms of the ratio between the phase and group velocities of incident waves. Computations are made for a Series 60 hull($C_B=0.6$) and are compared with the corresponding results of deep water. It is shown that the vertical drift moment for slender ships becomes completely free from water depth when the wave-ship length ratio is taken as parameter.

  • PDF