• Title/Summary/Keyword: Water Quality Variation

Search Result 704, Processing Time 0.026 seconds

Analysis of the Visual Quality of Riverfront Skyline Through the Feature of Height and Spatial Arrangement of Tall Building

  • Puspitasari, Ayu Wandira;Kwon, Jongwook
    • Architectural research
    • /
    • v.21 no.4
    • /
    • pp.91-98
    • /
    • 2019
  • In modern times, numerous cities are competing to create the unique skyline adjacent to the water. Tall buildings located across the river have a great contribution to the skyline of a riverfront city and can be a precious asset for the city. Moreover, in several cities, tall buildings and their impact on the urban skyline are a matter that should be considered and regulated in urban design. Therefore, as a prominent element in a larger visual setting of the city, tall buildings should improve the visual quality of the skyline rather than diminish that quality. This research attempts to provide an objective method to analyze the visual quality of the skyline made by a group of tall buildings through their feature of heights and spatial arrangement from riverfront views. The analysis is determined by the design variables of building heights variation, heights transition, density, and spacing of a group of tall buildings. A comparative case study of tall buildings in Yeouido and Lujiazui was conducted to prove the effectiveness of the analysis. The proposed method can be used in a simple way in the quantitative approach to quantify the visual quality of the skyline. In conclusion, Yeuido's skyline is not quite interesting from the riverfront view in terms of height variation and continuity of the skyline view because they are dispersed. Conversely, Lujiazui's skyline from the riverfront vantage points has a good quality in all aspects of the feature of height and spatial arrangements of tall buildings cluster. These factors can be used for the urban designer on how proposed tall buildings within the cluster should appropriately respond to adding image on the skyline.

Advanced Water Treatment by UF/MF Membranes (UF/MF막을 이용한 고도수처리)

  • 김기협
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.105-142
    • /
    • 1997
  • We know very well the importance of water. Recently, we perceive the truth that water influence the quality of products and we must pay for it. Besides, we recognize why the water treatment is indispensable for life as well as industries. The variation of environment changes the natural resources and threatens the human life. Now, we cannot get water freely from nature. We should find new processes which are effective and inexpensive. We believe that the membrane technology can suggest the new way of water treatment. I'd like to explain the situation of water resource and the membrane processes by UF/MF membranes. I'll also introduce several case studies in this lecture. Till now, about 10 MF/UF systems were established in Korea. Of course, the usage of MF/UF for water treatment is beginning stage in Korea. But the future prospect is very good. Korean government has been developed various kinds of membrane processes for the purpose of drinking water, water reuse, development of new water resources and water related technologies, etc. In near future, maybe we will meet serious water problems, water deficiency and contamination. Fortunetely, we can suggest the membrane process for solving those problems. Membrane technology will be the base of clean technology.

  • PDF

Development of Revegetation Technique for Water Attacking Point Using Waterlogged Prevention Frame Revetment (침수방틀을 이용한 자연형 하천의 수충부 녹화공법 개발)

  • Moon, Seok Ki;Lee, Eun Yeob;Han, Sung Sik;Lee, Ki Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.98-109
    • /
    • 2001
  • This study aimed to investigate the effect of revegetation technique for water attacking point using waterlogged prevention frame revetment. In this study, we evaluate frame revetment stability, water quality, plant growth and ecological and envirnomental changes in Mooshim streamside landscape. The results are as follows; 1) The waterlogged prevention frame revetment appeared to be stable despite of two big floods. The materials used for the revetment were not eroded on the water attacking point. Thus, we confirmed the effect of scour prevention of the frame work. 2) The effects of the frame revetment on the water quality appeared to be good for the surrounding environment. Dissolved Oxygen(DO) was higher about $0.4{\sim}0.6mg/{\ell}$ at the frame revetment than that of the main stream flow. pH value was lower about 0.4~0.5. Electric Conductivity(EC) showed lower about $0.8{\sim}1.1{\mu}s/cm$. at submersion prevent frame than the low-flow of the stream. Turbidity was lower about $0.6{\sim}1.2mg/{\ell}$. 3) As the effects on ecological and environmental conditions, we discovered a number of carassius auratus and Zacco platypus in the frame revetment area. Also, sympetrum balteata, coenagrionidae was observed frequently. 4) The plant growth did not appear to tumble or wither despite of two big floods. The visual rating of plant growth was evaluated as medium (around 5 point) 5) The landscape analysis derived four factors(i.e. the harmony, the variation, the flexibility and the provincial characteristics) from the factor analysis.

  • PDF

Study on the Wastewater Treatment by Floating Aquatic Plant System Using Water Hyacinth for the Industrial Complex in Rural Area (물옥잠을 이용한 수중처리방법에 의한 농공단지 폐수처리에 관한 연구)

  • 윤춘경;김형중;류재현;여운식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.64-71
    • /
    • 1997
  • Floating aquatic plant system using water hyacinth was applied to examine feasibility as a wastewater treatment system for the industrial complex in rural area. The wastewater from the industrial complex does not likely contain toxic pollutants because the industries which generate wastewater with toxic compounds are not allowed to move in. Pilot plant was installed at Baeksuk Nongkong Danzi in Chunahn-City, Chunchungnam - Do , and field study was performed during summer and fall of 1996. Hydraulic loading rate was 0. $0.19m^3/m^2$.day. The effluent concentration of DO was higher than influent, and it implies that 0.6m depth reactor was reaerated enough to increase DO level. The influent concentration of BOD varied significantly from less than 30 to 120mg/${\ell}$ during the study period, however, effluent concentrations were generally lower than the water quality standard and removal efficiency was up to 85%. The influent concentration of COD also showed wide variation from less than 40 to 160mg/${\ell}$ and effluent concentration was higher than water quality standard when influent concentration was over l00mg/${\ell}$. The influent concentrations of T-N and T-P were lower than water quality standard and no further treatment was required, and these compounds were also removed in the system. Although some improvement and refinement are still required, overall* the floating aquatic plant system was proved to be feasible to apply to treat wastewater from industrial complex in rural area.

  • PDF

Influence of Water Supply Withdrawal on the River Flow and Water Quality (하천취수가 하천흐름 및 수질에 미치는 영향)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.343-352
    • /
    • 2011
  • The water quantity by intake station as well as the tributary flow discharge acting as sink or source were added to the main flow rate in the present study and RMA-2 and RMA-4 models were applied to the reach from Pal-dang dam to Jam-sil submerged weir to investigate the influence of water supply withdrawal on the river flow and water quality. The numerical results revealed that the water supply withdrawal from 5 intake stations located upstream of Jam-sil submerged weir changed the total flow rate and therby induced different hydraulic characteristics in terms of water surface elevation and velocity. The changed flow field by the inclusion of water intake quantity led to the variation of water quality. By the consideration of the water supply withdrawal, the velocity structure was significantly disturbed by the outflowing flow condition nearby Gu-ui, Ja-yang, and Pung-nap intake stations. Furthermore, the mean velocity was lowered by 25% and the stage upstream of Gu-ui station rose upto 1.5 cm compared with the result by exclusion of water intake. In case of no water withdrawal, the distribution of BOD concentration was parallel throughout the domain. However, when the water withdrawal is considered, the distribution of BOD concentration nearby the Gu-ui, Am-sa, and Ja-yang station was signifiantly changed. In addition, the BOD concentration including the intake stations showed higher value at the downstream of the reach due to the loss of the discharge by water withdrawal effect. It is concluded that both the inflow and outflow discharges from tributaries and water intake stations should be included in the numerical simulation to analyze the hydrodynamic behaviors and mixing characteristics more accurately.

Incorporation of Selected Strains of Pediococcus spp. on Quality Characteristics of Dry Fermented Sausage during Fermentation and Ripening

  • Seleshe, Semeneh;Ameer, Ammara;Kang, Suk Nam
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.1078-1094
    • /
    • 2021
  • This research investigated the physio-chemical and microbial quality characteristics of dry fermented sausage from selected Pediococcus strains: P. acidiliactici (PE1) and P. pentosaceus (PE2) as compared to commercial starter culture (COS) during fermentation and ripening. Treatments showed no substantial variation (p<0.05) in water activity (aw) values across the study period. PE1 and PE2 treatments exhibited similar (p>0.05) pH values and presented remarkable (p<0.05) lower volatile basic nitrogen (VBN) and thiobarbituric acid reactive (TBARS) content than COS treatment throughout the ripening period. However, the pH values in COS batch were considerably lower than others. PE1 samples presented a significant highest (p<0.05) counts both in lactic acid bacteria (LAB) and total plate count (TPC) than COS and PE2 treatments at 7 days fermentation, and it resulted in a similar and higher TPC count as COS after the ripening period. After the ripening process, treatments are ordered based on LAB counts as follows: COS>PE1>PE2. All batches presented similar redness and yellowness attributes since the 7 days of fermentation and in lightness across the study period. Treatments were similar (p>0.05) in springiness and chewiness traits across the study period and in hardness characteristics in the ripened products. Cohesiveness was higher in PE1 and COS batches. No variation (p>0.05) in aroma and sourness sensory attributes of treatments. The color attribute was highest (p<0.05) in PE1 and PE2 treatments and PE1 had the highest overall acceptability. The overall outstanding merit exhibited by PE1 can be utilized in the commercial production of high-quality dry fermented sausage.

Effect of Change in Hydrological Environment by Climate Change on River Water Quality in Nam River Watershed (기후변화에 따른 남강유역의 수문환경의 변화가 하천수질에 미치는 영향)

  • Kang, Ji Yoon;Kim, Young Do;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.873-884
    • /
    • 2013
  • In Korea, the rainfall is concentrated in summer under the influence of monsoon climate. Thus, even a small climate change can be significant problems in water resources. As a result, a lot of attention has been focused on climate changes and a number of researches have been conducted in a manner commensurate with the attention to the climate change. This study is intended to forecast the changes in the flow and water quality of the Nam river resulting from the future climate changes in the Nam river basin using a watershed and water quality model. An SWAT model, as a watershed hydrologic model, was established after estimating a climate scenario using an artificial neural network method, and the established model was verified and adjusted using date from the Ministry of Environment to evaluate the applicability of the model. As a consequence, $R^2$ showed more than 0.7 in the simulation test, which satisfies the minimum required level. Results from the SWAT model and the future Namgang dam discharge calculated by HEC-ResSIM is used as input date for QUALKO. The results showed a huge variation in BOD depending on the annual flow of the river, which recorded a maximum difference of 2 mg/L between a rainy season and a dry season. It can be deduced that because rainfall and the runoff of a basin significantly account for the water quality of a river, higher water concentrations are recorded in a dry season in which the flow is not as much as that in a rainy season. It also can be said that water should be reserved in advance to secure water in the Nam river downstream for a dry season and be controlled in an effective and efficient manner to provide better water quality.

Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs (총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석)

  • Hwang, Ha-sun;Rhee, Han-pil;Seo, Ji-yeon;Choi, Yu-jin;Park, Ji- hyung;Shin, Dong-seok;Lee, Sung-jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.

Seasonal Dynamics of Aquatic Environment and Phytoplankton in Pyeongtaek Reservoir, Korea (평택호에서 수환경과 식물플랑크톤의 계절적 동태)

  • Sin,Jae-Gi
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Seasonal investigations were conducted to determine the major aquatic environmental factors and the variation of phytoplankton in Pyeongtaek Reservoir in March, June, September, and December 2000. Heavy rainfall mainly occurs from late June to mid-September, and water quality of reservoir was high in the influent zone of stream and riverine zone of reservoir. The biomass of phytoplankton was related to aquatic environmental factors. In particular, its value increased where nutrient concentration was high. Likewise, the increase of turbidity was found to have anthropogenic effects on the varying quantity of phytoplankton. The phytoplankton composition in quantitative survey identified into 43 genera and 71 species. Species numbers of Bacillariophyceae, Cyanophyceae, and Chlorophyceae accounted for 17%, 15%, and 49%, respectively, with the remainder constituting less than 3-7%. The distribution of such phyla also significantly varied according to seasons, accounting for 25%, 37%, 61%, and 14% in March, June, September, and December, respectively. Bacillariophyceae and Chlorophyceae were observed throughout the year, while Cyanophyceae proliferated in June and September. Euglenophyceae and Dinophyceae were prevalent in March and September, while Cryptophyceae occurred in March and December. The succession trend of phytoplankton showed the maximum cell density was followed by Bacillariophyceae (6.8$\times$$10^3$ cells ${\cdot}$ml)$\rightarrow$ Chlorophyceae (3.7$\times$$10^3$ cells ${\cdot}$ml)$\rightarrow$Cyanophyceae (1.3$\times$$10^4$ cells ${\cdot}$ml)$\rightarrow$Cryptophyceae (1.2$\times$$10^3$ cells ${\cdot}$ml). The cell density was the highest in the upstream. Dominant species were composed of Aulacoseira ambigua, Stephanodiscus hantzschii f. tenuis of Bacillariophyceae, Anabaena spiroides var. crassa, Microcystis aeruginosa, Oscillatoria amphibia of Cyanophyceae, Actinastrum hantzschii var. fluviatile, Pediastrum duplex var. reticulatum of Chlorophyceae, Euglena gracilis, Trachelomonas spp. of Euglenophyceae, and Chroomonas spp., Cryptomonas spp. of Cryptophyceae. As a results, seasonal variation of phytoplankton in Pyeongtaek Reservoir was evident in spite of inflow the high concentration of nutrients from watershed streams, because hydrological control and anthropogenic disturbance in reservoir were found to have major effects on the retention time of water.

Experimental study on the capacity of pilot scale FBC for paper sludge (Pilot plant 규모 유동충 소각로의 제지 슬러지 소각 용량에 관한 실험적 연구)

  • La, Seung-Hyuck;Moon, Dong-Jin;Kang, Kyung-Tae;Shin, Dong-Hoon;Hwang, Jung-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.199-203
    • /
    • 2002
  • In this paper, the effects of water contents on combustion characteristics of paper sludge and capacity of fluidized bed combustor(FBC) were investigated using 0.26m diameter, 1.75m height pilot-plant scale combustor. Combustion tests of paper sludge containing water contents between 40wt% and 50wt% were performed. The temperature and emission variation, the pressure inside combustor were measured to monitor the fluidization quality. The experimental results showed that 30kg/hr feeding rate of sludge containing water up to 45wt% was preferable for this system. Sludge loading rate, heat release rate were calculated from experimental data as major parameters showing FBC capacity. Comparsion with sludge loading rate from other source was also performed

  • PDF