• Title/Summary/Keyword: Water Quality Measurement

Search Result 533, Processing Time 0.026 seconds

Characteristics and Combined Sewer Overflows (합류식 하수관거의 유출 특성 분석 조사)

  • An, Ki-Sun;Jang, Sung-Ryong;Kwon, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.747-753
    • /
    • 2010
  • It follows in quality and sewage exclusion method of the investigation objective sector and the Combined Sewer Overflows which is suitable in regional characteristics and the confluence area against the rainfall initially a flow and the medulla and measurement - it analyzes the initial rainfall outflow possibility control plan which is suitable in the domestic actual condition and it proposes the monitor ring plan for the long-term flow and pollution load data accumulation. From the research which it sees the Infiltration water/Influent water and CSOs investigation it passes by the phase of hazard chain and Namwon right time 4 it does not hold reverse under selecting, Measurement it used the hazard automatic flow joint seal Sigma 910 machine and in case 15 minute interval of the I/I, it measured a flow at case 5, 15 minute standing of the CSOs. The water quality investigation for the water leakage investigation of the I/I and the sewage from the point which is identical with flow measurement during on-the-spot inspection duration against 6 items which include the BOD sampling and an analysis, when the rainfall analysis for CSOs fundamental investigation analyzed against 18 items which include the BOD sampling. Consequently, for the optimum interpretation invasion water / inflow water of the this investigation area day average the lowest flow - water quality assessment veterinarian optimum interpretation hazard average per day - lowest flow - it averages a medulla evaluation law department one lowest flow evaluation technique and it selects, it presentation collectively from here it gets, position result with base flow analysis of invasion water / inflow water.

Remote Water Quality Warning System Using Water Fleas

  • Park Se-Hyun;Kim Eung-Soo;Park Se-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Hardware for monitoring the water quality using water fleas is developed. Water flea is a frequently used biological sensor for monitoring the water quality. Water fleas quickly respond to the incoming toxic water by changing their activity when they are exposed. By measuring the activity of water fleas, the incoming toxic water is instantly detected. So far the measurement of activity of water fleas has been done with a system equipped with both a light source of LED and a light detector of photo transistor. Water flea itself is, however, sensitive to light resulting in incorrect response and the system has two inconvenient separate parts of the light source and the detector. This paper suggests a system using a CCD camera instead of a light source and a detector. The suggested system processes the image data from the CCD camera in real time without any delay. The developed system becomes a part of the remote water monitoring embedded system.

Multidimensional Hydrodynamic and Water Temperature Modeling of Han River System (한강 수계에서의 다차원 시변화 수리.수온 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.866-881
    • /
    • 2012
  • Han River is a complex water system consisting of many lakes. The water quality of Lake Paldang is significantly affected by incoming flows, which are the South and North branches of the Han River, and the Kyungan Stream. In order to manage the water quality of the Lake Paldang, we should consider the entire water body where the incoming flows are included. The objectives of this study are to develop an integrated river and lake modeling system for Han River system using a multidimensional dynamic model and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using field measurement data obtained in 2007 and 2008. The model showed satisfactory performance in predicting temporal variations of water level, flow rate and temperature. The Root Mean Square Error (RMSE) for water temperature simulation were $0.88{\sim}2.13^{\circ}C$ (calibration period) and $1.05{\sim}2.00^{\circ}C$ (verification period) respectively. And Nash-Sutcliffe Efficiency (NSE) for water temperature simulation were 1089~0.98 (calibration period) and 0.90~0.98 (verification period). Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature within Han River system. The variations of temperature along the river reaches and vertical thermal profiles for each lakes were effectively simulated with developed model. The suggested modeling system can be effectively used for integrated water quality management of water system consisting of many rivers and lakes.

Pollutants Classification based on Trend Analysis and Assessment of Water Pollutants Achievement in Subbasins of Han River Basin (한강수계 중권역별 오염물질 추세분석 및 달성도 평가를 통한 우선관리물질 선정)

  • Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Hwang, Ha-sun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.67-76
    • /
    • 2019
  • The objectives of this study were to analyze trends of water pollutants and to evaluate the achievement of water quality standards by subbasins in the Han River. The trends of 40 water pollutants at 232 water quality measurement points were analyzed. Chemical oxygen demand (COD), Total organic carbon (TOC), Total coliforms (TC), et cetera were found to be worsening trend. For evaluation of achievement, we evaluated water quality arithmetic mean with river environment standards and human health standards at representative points of the subbasin. Biochemical oxygen demand (BOD), TOC, Total phosphorus (T-P), Fecal coliforms (FC), TC exceeded water quality standards, and water quality of human health standards was all satisfied. So, we prioritized pollutants. If pollutants exceed water quality standards or were worse, they were classified first pollutants. Although BOD and T-P are first pollutants because of water quality standards excess, they are continuously improved. Also, it is better to maintain current status because water quality management system of BOD and T-P is well prepared. Meanwhile, TOC, TC, and FC exceed water quality standards. Furthermore, they were worse gradually, but there is a lack of management systems such as water quality standards of the effluence facilities. Therefore, it is necessary to supplement the system. The results of this study can be used as primary data for the establishment of water quality standards and selection of management pollutants.

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

A Study of Non-parametric Statistical Tests to Quantify the Change of Water Quality (수질변화의 계량화를 위한 비모수적 통계 준거에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1997
  • This study was carried out to suggest the best statistical test which may be used to quantify the change of water quality between two groups. Traditional t-test may not be used in cases where the normality of underlying population distribution is not assured. Three non-parametric tests which are based on the relative order of the measurements, were studied to find out the applicability in water quality data analysis. The sign test is based on the sign of the deviation of the measurement from the median value, and the binomial distribution table is used. The signed rank test utilizes not only the sign but also the magnitude of the deviation. The Wilcoxon rank-sum test which is basically same as Mann-Whitney test, tests the mean difference between two independent samples which may have missing data. Among the three non-parametric tests studied, the singed rank test was found out to be applicable in the quantification of the change of water quality between two samples.

  • PDF

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

An Experimental Study on the Application of Measuring Method of Water Content for Quality Control of Concrete (콘크리트 품질관리를 위한 단위수량 측정 기법의 적용성에 관한 실험적 연구)

  • Kim, Yong-Ro;Choi, Il-Ho;Jung, Yang-Hee;Lee, Do-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.179-188
    • /
    • 2007
  • Recently, the concern on the receipt of poor ready-mixed concrete in the construction field and the durability of concrete has been increased. Based on the such background, a large number of measuring methods of water content for fresh concrete have been developed and enforced in a developed country. In this study, to investigate practicality for quality control of ready-mixed concrete among various water content measurement techniques, microwave range method, air meter method and capacitance measurement method as measuring methods of water content were selected. Then, it was evaluated estimating performance of water content according to the change of binder types, fine aggregate types, absorption ratio, water content and water-binder ratio in series I and II. Also, it was examined influence on error occurrence of water content according to change of properties of used materials in series III. Finally, based on this study, it was proposed fundamental data to utilize measurement technique of water content to quality control of ready-mixed concrete in construction field.

A Nonparametric Long-Term Trend Analysis Using Water Quality Monitoring Data in Nam-River (남강 수질측정망 자료를 이용한 비모수적 장기 수질 추세 분석)

  • Jung, Kang-Young;Kim, Myojeong;Song, Kwang Duck;Seo, Kwon Ok;Hong, Seong Jo;Cho, Sohyun;Lee, Yeong Jae;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1029-1048
    • /
    • 2018
  • In this study, seasonal Mann - Kendall test method was applied to 12 stations of the water quality measurement network of Nam-River based on data of BOD, COD, TN and TP for 11 years from January 2005 to December 2015 The changes of water quality at each station were examined through linear trends and the tendency of water quality change during the study period was analyzed by applying the locally weighted scatter plot smoother (LOWESS) method. In addition, spatial trends of the whole Nam-River were examined by items. The flow-adjusted seasonal Kendall test was performed to remove the flow at the water quality measurement station. As a result, BOD, COD concentration showed "no trand" and TN and TP concentration showed "down trand" in regional Kendall test throughout the study period. BOD and TP concentration in "no trand", COD, and TN concentration showed an "up trand" tendency in Nam-River dam. LOWESS analysis showed no significant water quality change in most of the analysis items and stations, but water quality fluctuation characteristics were shown at some stations such as NR1 (Kyungho-River 1), NR2 (Kyungho-River 2), NR3 (Nam-River), NR6 (Nam-River 2A). In addition, the flow-adjusted seasonal Kendall results showed that the BOD concentration was "up trand" due to the flow at the NR3 (Nam-River) station. The COD concentration was "up trand" due to the flow at NR1 (Kyungho-River 1) and NR2 (Kyungho-River 2) located upstream of the Nam-River. The effect of influent flow on water quality varies according to each site and analysis item. Therefore, for the effective water quality management in the Nam-River, it is necessary to take measures to improve the water quality at the point where the water quality is continuously "up trand" during the study period.

-A Study on a Mathematical Model for Water Quality Prediction for Rivers- (하천(河川)의 수질예측(水質豫測)을 위한 수치모형(數値模型)에 관한 연구(硏究))

  • Kim, Sung-Soon;Lee, Yang-Kyoo;Kim, Gap-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.73-86
    • /
    • 1995
  • The propriety of the numerical model application was examined on Paldang resevoir and its inflow tributaries located in the center of the Korean peninsula and the long term water quality forecast of the oxygen profile was carried out in this syduy. The input data of the model was the capacity of the reservoir, catchment area, percolation, diffusion rate, vertical mixing rate, dissolution rate from the bottom of the reservoir, outflow of the resevoir, water quality measurement and meteorology data of the drainage basin, and the output result was the annual estimation value of the dissolved oxygen concentration and the biochemical oxygen demand. The modeling method is based on the measured or calculated boundary condition dividing the water area into several blocks from the macorscopic aspect and considering the mass balance in these blocks. As the result of the water quality forecast, it was expected that the water quality in Northern Han River and Paldang reservoir would maintain the recent level, but that the water quality in the Southern Han River and its inflow tributary would worsen below the grade 4 of the life environmental standard from around 2000 owing to the decrease of DO concentration and the increase of BOD concentration.

  • PDF