• Title/Summary/Keyword: Water Quality Measurement

Search Result 533, Processing Time 0.028 seconds

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(I) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.23-36
    • /
    • 1982
  • The stochastic variations and structures of time series data on water quality were examined by employing the techniques of autocorrelation function, variance spectrum, Fourier series, autoregressive model and ARIMA model. These time series included hourly and daily observation on DO, turbidity, conductivity pH and water temperature. The measurement was made by automatic recording instrument at Noryangjin and Dook-do located in the downstream part of Han River during 1975 and 1976. Hourly water quality time series varied with the dominant 24-hour periodicity, and the 12-hour periodicity was also observed. An important factor affecting 24-hour periodic variation of DO is believed to be photosynthesis by algae. These phenomena might be attributable to periodic discharges of municipal sewage. Noryangjin site showed the more distinct 12-hour periodicity than Dook-do site did, and tidal effect might be responsible for the difference. The water quality, as measured by DO and turbidity, was better in the afternoon compared with the quality in the morning. This change can be explained by the periodic variation of DO, temperature and the amount of municipal wewage discharge. It was also observed that the water temperature at Noryangjin was higher than the temperature at Dook-do. This difference might have been caused by the pollutants that were added to the section between two sites. The correlation coefficients between some of the variables were fairly high. For example, the coefficient was -0.88 between DO and water temperature, 0.75 between turbidity and river flow, and 0.957 between water temperature and air temperature. The lag time of heat transfer from the air to the water was estimated as 24 days. The first order auto-regressive model was appropriate for explaning standardized hourly DO time series. The ARIMA model of (1, 0, 0) type provided relatively satisfactory results for daily DO time series after the removal of significant harmonic value.

  • PDF

An Experimental Study on the Evaluation of Concrete Unit-Water Content by Aggregate Type Using Frequency Domain Reflectometry Sensor (고주파수분센서를 이용한 골재 종류에 따른 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Yu, Seung-Hwan;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.201-202
    • /
    • 2023
  • Recently, interest in concrete quality has been increasing. It is important to manage these factors due to unit-water content and aggregate quality that affect concrete quality. In this study, the unit-water content of concrete was measured through an economical, easy-to-measure, and portable Frequency Domain Reflecmetry sensor among micro-methods that compensated for the shortcomings of existing concrete unit-water content measurement methods. As a result of predicting the unit-water content, the accuracy within the ± 10 kg/m3 error range was confirmed to be more than 72% of all factors. In order to ensure high accuracy, it is considered necessary to conduct an experiment to evaluate the unit-water content by conducting additional experiments according to other variables and factors.

  • PDF

Factor analysis of the trend of stream quality in Nakdong River

  • Kim, Kyong-Mu;Lee, In-Rak;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1201-1210
    • /
    • 2008
  • The goal of this paper is to investigate the trend of stream quality and the quality of water in Nakdong river by the method of factor analysis. It used the fourteen different monthly time series data such as pH, BOD, COD, SS, TN and etc. of the thirty four of Nakdong River measurement points from Jan. 1998 to Dec. 2006. The result of factor analysis is that the factor 1 results from organic water pollution is occupied 29.288% such as BOD, COD, TN and EC, and the factor 2 explained from sewage and a seasonal variation is occupied 16.467% such as SS.

  • PDF

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • Progress in Medical Physics
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.

Analysis of Water Quality Trends Using the LOADEST Model: Focusing on the Youngsan River Basin (LOADEST 모형을 활용한 수질 경향성 분석: 영산강 수계를 중심으로)

  • Gi-Soon, Lee;Jonghun, Baek;Ji Yeon, Choi;Youngjea, Lee;Dong Seok, Shin;Don-Woo, Ha
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.306-315
    • /
    • 2022
  • In this study, long-term measurement data were applied to the LOADEST model and used as an analysis tool to identify and interpret trends in pollution load. The LOADEST model is a regression equation-based pollution load estimation program developed by the United States Geological Survey (USGS) to estimate the change in the pollution load of rivers according to flow rate and time and provides 11 regression equations for pollution load evaluation. As a result of simulating the Gwangjuchen2, Pungyeongjeongchen, and Pyeongdongchen in the Yeongbon B unit basin in the middle and upper reaches of the Yeongsan River with the LOADEST model using water quality and flow measurement data, lower values were observed for the Gwangjuchen2 and Pyeongdongchen, whereas the Pungyeongjeongchen had higher values. This was judged to be due to the characteristics of the LOADEST model related to data continuity. According to the parameters estimated by the LOADEST model, pollutant trends were affected by increases in the flow. In addition, variability increased with time, and BOD and T-P were affected by the season. Thus, the LOADEST model can contribute to water quality management as an analytical tool for long-term data monitoring.

Development of Multi-point Heat Flux Measurement for Steel Quenching (강재 열처리용 다점 열유속 측정 기술 개발)

  • Lee, Jungho;Oh, Dong-Wook;Do, Kyu Hyung;Kim, Tae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.

A Study on the Water Quality Simulation in the Midstream and Downstream of Geum-River (금강 중하류에서의 수질모의에 관한 연구)

  • Sin, Jae-Gi;Im, Chang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.145-157
    • /
    • 2000
  • The Water Quality Analysis Simulation Program 5 (WASP5) and HEC-2 models have been coupled and applied to find the possibility of simulation of long-term river water quality variation. The EUTR05 as a simulator of water quality simulation in WASPS model was used to simulate the water quality variables in the downstream of Geum-River from Daechung multi-purpose dam during the dry period. The water quality and flow rate conditions have been measured at the stage measurement stations located in the downstream of Geum-River from Daechung dam in December, 1998 and January and March, 1999. The water quality simulation model was calibrated with January data of 1999, and verified with December data of 1998 and March data of 1999. The trend of longitudinal variation of water quality variables simulated by model is consistent with that of measured water quality constituents except chlorophyll-a, $BOD_5,\;NH_3-N\;and\;PO_4-P$ simulated with March data of 1999. Furthennore, the chlorophyll a concentration in the mainstream of Geum-River was simulated by changing the concentrations of $PO_4-P$ and/or $NH_4-N$ flowing into the mainstream of Geum-River from Gabcheon and Mihocheon. The variation of chlorophyll a concentration in the mainstream was almost ignorable except only when $NH_3-N\;and\;PO_4-P$ concentrations decreased by 70% flow into the mainstream from Gabcheon and Mihocheon.

  • PDF

A Spatial Change Analysis of Water Quality Pollutant using GIS and Satellite Image (GIS와 위성영상을 이용한 수질 오염인자의 공간 변화 분석)

  • Jo, Myung-Hee;Kwon, Bong-Kyum;Bu, Ki-Dong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.60-70
    • /
    • 1999
  • The purpose of this study is to analyze the spatial change of water quality pollutant in the upper-stream of Kumho River basin. For this purpose, it compared with ground survey data of water quality measurement, using GIS and Landsat TM image, and then constructed a database of water quality pollutants in the watershed by Arc/Info. Also the land cover classification maps of 1985 and 1997 were prepared using maximum likelihood classification. This study detected and analysed the classified images to produce the area of land cover change per sub-basin. In addition, choropleth maps were prepared with spatial change value of water quality pollutants, and overlay analysis was carried out with weight score for each layer. The results of this study revealed that population, animals and fruit orchards were main factors in the spatial change of water pollution of Kumho River basin. The Comparision of pollutions by sub-basins showed a high pollution value in Daechang-chun and Omok -chun stream which follows through the urban area.

  • PDF

Evaluation of Pollutant loads at Inflow Streams under Ara Waterway Basin

  • Han, Sangyun;Jung, Jongtai
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this study, to evaluate the characteristics of the pollution in the major inflow tributaries and major environmental facilities in the watershed of Ara waterway, An inflow flow rate measurement and water quality analysis were conducted during dry and rainy seasons. In addition, the flow rate measurement, water quality analysis, and pollutant load at each monitoring point were compared and evaluated. Influx of BOD5, T-P and T-N into the tributaries of the ARA waterway watershed, excluding the Gulpo river watershed, during dry season were only 0.007%, 0.005% and 0.004% respectively of the incoming loads in the entire ARA waterway basin. In addition, it was confirmed that the discharge pollutant loads during rainfall event was about 440 times more for BOD5, about 545 times on T-P, and about 23 times on T-N in comparison to the pollutant loads during the dry days. When the Gulhyeon rubber dam was deflated, the discharged pollutant load during a rainfall was higher than the estimated load at the G7 monitoring point because the deposited pollutants from the upstream riverbed flowed down. Therefore, during a rainy season, it is necessary to manage the influx of high-load water pollutants from the overflow and deflation of the Gulhyun rubber dam as well as to find a strategy to reduce the pollutant loads in the Gulpo river watershed.

A development of integrated water-quality measurement system (통합 수질계측 시스템 개발)

  • Yang, Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.211-216
    • /
    • 2007
  • The quality of tap water on the whole water-supply system, from a large filtration plant to a private faucet, has to be guaranteed the standards of drinking water. At this point in time, however, the supply process of the tap water has not been monitored and managed scientifically. The piped water, especially the most small-scale reservoirs(underground or overhead type) are always exposed to various contaminations and impurities. Recently monitoring systems of water-quality were spread on some large filtration plants or distributing reservoirs. In particular, the water quality monitoring method using the internet is adopted into some local government whose inhabitants can check up the water quality anytime and anywhere. The construction of this system that has to apply a large scale needs, and has a limitation on the small water-supply system, such as apartments, public facilities and small-scale underground or overhead reservoirs. In this work, we suggest the integration system of individual water-quality sensor modules that have a low price. By using the developed integration system and monitoring program operated on the internet, the system managers of reservoirs can monitor and manage water-quality characteristic values of drinking water in online. Since the proposed system was modularized, the system can be applied easily into various reservoirs with a low cost and regardless of its scale, small or large.

  • PDF