• Title/Summary/Keyword: Water Quality Analysis

Search Result 3,166, Processing Time 0.03 seconds

Application of Water-Quality Management Model for Upstream Basin of Hoengsung Dam (횡성댐 상류유역에 대한 수질관리모형의 적용)

  • Kim, Sang Ho;Lee, Eul Rae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.239-246
    • /
    • 2008
  • In this study, an optimized deterministic water-quality model was constructed to estimate water quality of a river and lake in the upstream basin of a dam. A stochastic water-quality analysis using reliability analysis technique was applied to the model. The model was tested in the 13.9 km reach from Maeil stage station of Kyechun to Hoengsung Dam of Sum River. After finding hydraulic characteristics from nonuniform flow analysis, Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization technique for model calibration was applied to determine optimum reaction parameters, and model verification was performed based on these. The stochastic model, using Mean First­Order Second­-Moment (MFOSM) and Monte-Carlo methods, was applied to the same reach as the deterministic study. Variations of discharge and water quality in headwater were considered, as well as variations of hydraulic coefficients and reaction coefficients. The statistical results of output variables from MFOSM were similar to those from the Monte-Carlo method. Risk analysis using MFOSM and Monte-Carlo methods presented the probabilities of some locations in the Hoengsung Lake violating existing water-quality standards in terms of DO and BOD.

Development of 2-D Water Quality Management Model by Using Reliability Analysis (신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Kim, Won;Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.463-474
    • /
    • 2002
  • A two-dimensional water quality management model, Unsteady/Uncertainty Water Quality Model(UUWQM), is developed for a hydrodynamic analysis, an advection-diffusion analysis, and a reliability analysis by using uncertainty technique. The model is applied to the 35 km reach of Sungju to Hyunpoong in the midstream of Nakdong River. 2-D hydrodynamic and water quality analyses are peformed in this reach. Important input variables are decided by sensitivity analysis and verified by Monte Carlo method. Frequency distributions of water quality concentrations are computed from MFOSM method and Monte Carlo method at several locations in this study area. A water quality management system is constructed by calculating the violation probabilities of existing water quality standards.

The Evaluation of Water Quality in the Mankyung River using Multivariate Analysis (다변량해석기법을 이용한 수계의 수질평가)

  • O, Yeon Chan;Lee, Nam Do;Kim, Jong Gu
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.233-244
    • /
    • 2004
  • This study was conducted to evaluate water quality in the Mankyung River using multivariate analysis. The analysis data which was surveyed from January 1996 to December 2002 in Mankyung river was aquired by the ministry of environment. Twelve water quality parameters were determined on each survey. The results were summarized as follow; Water quality in the Mankyung River could be explained up to 74.90% by four factors which were included in loading of organic matter and nutrients by the tributaries(43.28%), seasonal variation(10.40%), loading of pathogenic bacteria by domestic sewage of Gapcheon (12.41%) and internal metabolism in river(8.81%). The result of cluster analysis by station was classified into three group that has different water quality characteristics. Especially, Iksan river was appeared to considerable water quality characteristics against other station. In monthly cluster analysis, three group was classified by seasonal characteristics. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by domestic sewage and livestock waste for water quality management of Mankyung river.

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

Analysis of Pollutant Characteristics in Nakdong River using Confirmatory Factor Modeling (확인적 요인모형을 이용한 낙동강 유역의 오염특성 분석)

  • Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.84-93
    • /
    • 2012
  • The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.

Identification of pollutant sources and evaluation of water quality improvement alternatives of the Geum river

  • shiferaw, Natnael;Kim, Jaeyoung;Seo, Dongil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.475-475
    • /
    • 2022
  • The aim of this study is to identify the significant pollutant sources from the tributaries that are affecting the water quality of the study site, the Geum River and provide a solution to enhance the water quality. Multivariate statistical analysis modles such as cluster analysis, Principal component analysis (PCA) and positive matrix factorization (PMF) were applied to identify and prioritize the major pollutant sources of the two major tributaries, Gab-cheon and Miho-cheon, of the Geum River. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant (WWTP), urban, and agricultural pollutions are identified as major pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. On the contrary, PMF identifies three pollutant sources in Gab-cheon, same as PCA result and two pollutant sources in Miho-cheon. Water quality control scenarios are formulated and improvement of water quality in the river locations are simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC) model. Scenario results were evaluated using a water quality index developed by Canadian Council of Ministers of the Environment. PCA and PMF appears to be effective to identify water pollution sources for the Geum river and also its tributaries in detail and thus can be used for the development of water quality improvement alternative of the above water bodies.

  • PDF

Analyzing the Spatio-temporal Trend in TMDL Water Quality for Gyeongnam Using Emerging Hot Spot Analysis (수질오염총량제 대응을 위한 경남 하천 수질의 시공간 경향성 분석)

  • Sun, Danbee;Kim, Jiho;Kim, Sangmin;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.4
    • /
    • pp.53-65
    • /
    • 2020
  • This study aimed to provide a basic information for managing the water quality of national and regional 1st rivers in Gyeongnam by analyzing the emerging hot spot patterns in BOD, T-P, and TOC, and by grouping the changing trends into clusters. The emerging hot spot analysis for each water quality item was implemented in ArcGIS Desktop with monthly water quality data from 96 water environmental monitoring stations in Gyeongnam, and then four patterns of water quality change were classified by the K-mean cluster analysis. As for BOD, persistent cold spot pattern covered about 42.9% of target rivers, and T-P concentration tended to be low or be getting lower at over 70% of target rivers. While, for TOC, about 70% of target rivers resulted in oscillating hot spots. In addition, the cluster analysis showed that the downstream of Nakdong river had the top priority in terms of water quality management because of the increasing concentration for all the three water quality.

A Study on the Pollution Sources of Simple water Supply Piped System using Statistical Analysis (통계적 분석을 이용한 간이급수시설의 오염원에 관한 연구)

  • 이홍근;김현용;백도현;김지영;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.56-67
    • /
    • 1999
  • This study was performed to suggest the basic data and plans for the establishment of safe water supply plans in simple water supply piped system in the rural areas. In 4 different places, 24 points of water sources 36 points of taps from water sources were sampled. Of the whole 60 points, 55 points were ground water and 5 points were surface water. 14 items were measured for the analysis of water quality on each samples. The measured items were analyzed again by statistical method ; cluster analysis and principle components analysis. The results of this study are as followed. 1) In water quality analysis on water sources, 4 items, bacteria, E.coli, NH3-N and Fe exceed the standard. Of 24 points, 20 points(83%) on bacteria, 1 point(4%) on NH3-N and Fe exceed the standard. 2) In water quality analysis on near and remote taps, 4 items, bacteria, E.coli, NH3-N and Fe , exceed the standard. Of 36 points, 20 points (81%) on bactria, 1 pint(3%) on NH3-N and Fe exceed the standard. 3)Cluster analysis on water quality shows the differences by the kinds of water sources, geographical characteristics and distance from water sources. 4) Principle components analysis on ground water shows that Factor 1 and Factor 3 are natural fluctuation by the content of soil. Also, Factor 2 and Factor 4 are penetration of pollutants to underground. Therefore, it is needed to take deeper ground water in order to prevent from pollution in the areas which have ground water as water source . 5) Principle components analysis on surface water shows that Factor 1 is penetration of vacteria from surface to water source when rainfalls. Also, Factor 2 is fluctuation of water quality by the geographical characteristics. Therefore, the counterplans against non-point pollution source must be taken. Filtration and disinfection facilities are needed in the areas which have surface water as water source.

  • PDF

Water Quality Management of Agricultural Lakes Through Analysis of Agricultural Water Quality Survey Network Data (농업용수 수질측정망 자료 분석을 통한 농업용 호소의 수질관리방안)

  • Kim, Ho Il;Kim, Hyung Joong
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • The data of the agricultural water quality survey network was analyzed between from 1990 to 2010 in order to propose effective plans for water quality management by analyzing the characteristics of agricultural lakes and the change of water quality. The result of the analysis shows that there is a correlation between water quality and items that can be a function of water depth such as dam height, dam length, dam height/dam length ratio and active storage/surface area of lake ratio. This means that, Korean agricultural lakes, there is a correlation between water quality and water depth. Water quality of the lakes that have lower than 5m of active storage/surface area of lake ratio (effective water depth) especially tends to get worse rapidly. The Chl-a and COD concentration of Korean agricultural lakes have a tendency to increase between June and September. Therefore, we recommend first taking a water quality improvement project for the lakes preformed watershed management project, and taking a preventive short-term water quality improvement project for the unperformed lakes before June among lakes that have lower than 5m of effective water depth.

  • PDF

Review on Water Quality and Achievement of Water Quality Goal by Various Evaluation Methods in Geum River (다양한 평가기법을 이용한 금강 대권역의 수질 및 목표수질기준 달성도 평가)

  • Lee, Jae-Woon;Jeong, Hye-Sung;Yoon, Jung-Hee;Cheon, Se-Uk
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • The Ministry of Environment plans to improve quality of water which is achieved over 85% in rivers and 94% in lakes of the whole country as "Good Water" until 2015. Also, the law of evaluation of water quality and water quality goal were made newly. So, the water quality has evaluated by using new law since 2007. This study evaluated whether "Good Water" and" Water Quality Goal" were achieved or not in 22 middle-sized districts and major 10 lakes of Geum river. The achievement rates of rivers decreased and the achievement rates of lakes mostly were the same for 5 years. In 2007, the achievement rates of "Good Water" were 50% in rivers and 50% in lakes. The achievement rate of "Water Quality Goal" were 59.1% in rivers and 20% in lakes. The water quality in 2007 was evaluated worse than last year in case of rivers. The evaluations of Korea-Comprehensive Water Quality Index(K-CWQI) showed that achievement rates of "Water Quality Goal" were 81.8% in rivers and 0% in lakes. The statistical correlation analysis showed that correlations between BOD and COD were meaningful at the downstream, compared to upstream, generally. In case of lakes, correlations between COD and temperature were meaningful. Also, correlations between COD and Chl-a were meaningful. The Trophic State Index ($TSI_{KO}$) showed that the half of lakes are major over eutrophic status in lakes. These analytical methods such as K-CWQI, $TSI_{KO}$, statistical correlation analysis could be additionally helpful for evaluation of water quality and provide basis data for understanding characteristics of watershed in Geum river.