• Title/Summary/Keyword: Water Pressure Measurement

Search Result 352, Processing Time 0.041 seconds

A Study on Speedy Water Content Measurement Method for Soils (흙의 급속 함수비 측정방법에 관한 연구)

  • Park, Sung-Sik;Kim, Ju-Young;Lee, Sae-Byeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • During a construction of embankment, sub base, or retaining wall backfill, the speedy measurement of water content is necessary. In this study, a test method for field determination of water content of soil by the calcium carbide gas pressure (speedy water content measurement method) was evaluated for its reliability and accuracy. Dry oven and microwave oven methods were also used for water content measurement. In the test, weathered granite and Nakdong River sand in the site and kaolinite were used for water content measurement. The mass of 20, 22, 24, 26, 28, and 30 g of soil was respectively tested for 1, 3, and 5 min. The effect of each sample on water content was compared one another and analyzed. As the mass and testing time increased, the water content increased. The amount of soil was more important factor than testing time for the speedy water content measurement. In order to obtain similar result to that of dry oven method, 3 min of testing time with 24 g of soil was necessary for weathered granite classified as SM and 3 min with 30 g for Nakdong River sand classified as SP. For Nakdong River sand with 20-50% of kaolinite, the water content by speedy measurement increased as the clay content increased.

Rocket Engine Test Facility Improvement for Hot firing test of a Combustor in the 30-tonf class (30톤급 연소기의 연소시험을 위한 설비 개량)

  • Lee Kwang-Jin;Seo Seonghyeon;Lim Byoungjik;Moon Il-Yoon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.313-317
    • /
    • 2005
  • The facility improvement for hot firing test of combustion chamber having thrust of 30-tonf class and chamber pressure of 60bara were performed at ReTF in KARI. The KSR-III main engine having combustion pressure of 13bara and thrust of 12.5tonf had been successfully tested in this facility. To increase the capability of the facility, the feeding and the trust measurement system have been modified. The modification of the feeding system plays also a role of ensuring the stability of propellant supply and two step ignition sequence of combustion chamber. The one-axis thrust measurement system of up to 60tons has been newly manufactured and installed in test stand and the water/kerosene supply lines with high pressure vessel of $4m^3$ and gas nitrogen vessel of $10m^3$ have been designed for regenerative cooling system. The results of cold flow test show that this facility has been successfully improved to satisfy the requirement for hot firing test of high performance combustor.

  • PDF

Comparison of ANN model's prediction performance according to the level of data uncertainty in water distribution network (상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교)

  • Jang, Hyewoon;Jung, Donghwi;Jun, Sanghoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1295-1303
    • /
    • 2022
  • As the role of water distribution networks (WDNs) becomes more important, identifying abnormal events (e.g., pipe burst) rapidly and accurately is required. Since existing approaches such as field equipment-based detection methods have several limitations, model-based methods (e.g., machine learning based detection model) that identify abnormal events using hydraulic simulation models have been developed. However, no previous work has examined the impact of data uncertainties on the results. Thus, this study compares the effects of measurement error-induced pressure data uncertainty in WDNs. An artificial neural network (ANN) is used to predict nodal pressures and measurement errors are generated by using cumulative density function inverse sampling method that follows Gaussian distribution. Total of nine conditions (3 input datasets × 3 output datasets) are considered in the ANN model to investigate the impact of measurement error size on the prediction results. The results have shown that higher data uncertainty decreased ANN model's prediction accuracy. Also, the measurement error of output data had more impact on the model performance than input data that for a same measurement error size on the input and output data, the prediction accuracy was 72.25% and 38.61%, respectively. Thus, to increase ANN models prediction performance, reducing the magnitude of measurement errors of the output pressure node is considered to be more important than input node.

Measurements of Blood Viscosity Using a Pressure-Scanning Slit Viscometer

  • Sehyun Shin;Lee, Sung-Woo;Ku, Yun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1036-1041
    • /
    • 2004
  • A newly designed pressure-scanning slit viscometer is developed to combine an optical device without refraction while measuring blood viscosity over a range of shear rates. The capillary tube in a previously designed capillary viscometer was replaced with a transparent slit, which is affordable to mount optical measurement of flowing blood cells. Using a pressure transducer, we measured the change of pressure in a collecting chamber with respect to the time, p(t), from which the viscosity and shear rate were mathematically calculated. For water, standard oil and whole blood, excellent agreement was found between the results from the pressure-scanning slit viscometer and those from a commercially available rotating viscometer. This new viscometer overcomes the drawbacks of the previously designed capillary viscometer in the measuring whole blood viscosity. First, the pressure-scanning slit viscometer can combine an optical instrument such as a microscope. Second, this design is low cost and simple (i.e., ease of operation, no moving parts, and disposable).

Measurement of Water Flow in Closed Conduits by Chemical Tracer Method (추적자를 이용한 유량 측정)

  • Lee, Sun-Ki;Chung, Bag-Soon;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.19-26
    • /
    • 1999
  • Thermal output in a nuclear power plant is verified with calorimetric heat balance on the secondary plant. The calorimetry involves the precise measurement of the feedwater flow rate. However, the correct indication of feedwater flow rate obtained by a pressure-difference measurement across a venturi can be affected by instrument errors, fouling or a poorly developed velocity profile. This can result in an inaccurate mass flow rate and consequently an inaccurate estimate of power. The purpose of this study is to develop verification methods with accuracy better than $0.5\%$ for high precision flow measurement to be used for measuring feedwater flow rate. This chemical tracer method is a testing process that uses tracers which can be applied to quantify losses in electrical output due to the incorrect measurements of feedwater flow rate. And this system has good response to the variation of the flow rate. Accuracy of better than 0.5 percent can be expected for feedwater flow measurement, providing that the system can be stabilized during the test. This methodology is applicable to other flow systems well.

  • PDF

Extended inverse impedance method for multiple branches or loops pipeline systems (복합 관수로에서 인버스 임피던스 확장연구)

  • Dongwon Ko;Sanghyun Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.437-446
    • /
    • 2023
  • We propose a transient evaluation scheme using a pressure measurement in a complicate pipeline systems. Conservation of mass and momentum equations in time domain can be transformed into a pressure head and flowrate relationship between upstream and downstream point in frequency domain. The impedance formulations were derived to address measured pressure at downstream to evaluate of flowrate or pressure head at any point of system. Both branched pipeline element and looped pipeline element can be generally addressed in the platform of the basic reservoir pipeline valve system. The convolution of time domain response function with measured pressure head from a downstream point provides flowrate or pressure head response in any point of the designated pipeline system. The proposed method was validated through comparison between traditional method of characteristics and the proposed method in several hypothetical systems.

Water Repellent Finish of Polyester Fabric Using Carbontetrafluoride Plasma Treatment (4불화탄소 플라즈마처리에 의한 폴리에스테르 직물의 발수가공)

  • 모상영;이용운;김태년;천태일
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1994
  • In order to produce a water repellent surface on polyester fabric, samples were treated in the atmosphere of $CF_4$ glow discharge plasma. The samples used in the study were ployester fabric and poyester film. The purpose of film treatment is for the comparison of hydrophobicity with fabric sample at same treatment condition. Radio frequency(13.56MHz) generator was used as electric source and its in put power is 100 Watt. Water repellency was evaluated by contact angle measurement. Result obtained are as follows. 1) Fiber interstice of original fabric was ana lysed as 0.43$\mu$m, and this value was sufficiently ideal for making water repellent fabric. 2) The most favorable setting position of substrate was the center area between two electrodes. 3) Fabric contact angle was higher than film contact angle at same treatment condition, and its difference was more than 50${\circ}$. And it was incapalbe of fabric contact angle measurement when the film contact angle was less than 90${\circ}$. because the fabric is susceptible to absorption of water by the capillary effect. 4) Fabric contact angle can not revealed the precise defferences of surface hydrophobicity, however, the film contact angle showed the real hydrophobic nature. 5) It was not sufficient method to evaluate the hydrophobicity of fabric surface by merely measure of the water contact angle. 6) It showed high water repellent nature at 0.06 torr of $CF_4$ plasma gas pressure and duration of 45 seconds treatment, and it can not be anticipated more improved nature if the pressure and duration of treatment time were increased.

  • PDF

Experimental Study on Hydrodynamic Characteristics of Dam Break Flow for Estimation of Green Water Loading (청수현상 추정을 위한 댐 붕괴 흐름의 유체동역학적 특성에 관한 실험적 연구)

  • Hyung Joon Kim;Jong Mu Kim;Jae Hong Kim;Kwang Hyo Jung;Gang Nam Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.120-134
    • /
    • 2023
  • In this study, hydrodynamic characteristics of dam break flow were investigated by a series of experiments. The experiments were performed in a 2-D rectangular flume with obtaining instantaneous images of dam break flow to capture the free surface elevation, and pressure distributions on vertical wall and bottom of the flume. The initial water depth of the dam break flow was changed into 3 different heights, and the gate opening speed was changed during the experiments to study the effect of the gate speed in the dam break flow. Generation of dam break phenomena could be classified into three stages, i.e., very initial, relatively stable, and wall impact stages. The wall impact stage could be separated into 4 generation phases of wall impinge, run-up, overturning, and touchdown phases based on the deformation of the free surface. The free surface elevation were investigated with various initial water depth and compared with the analytic solutions by Ritter (1892). The pressures acting on the vertical wall and bottom were provided for the whole period of dam break flow varying the initial water depth and gate open speed. The measurement results of the dam break flow was compared with the hydrodynamic characteristics of green water phenomena, and it showed that the dam break flow could overestimate the green water loading based on the estimation suggested by Buchner (2002).

A Study on Environmental Improvement of Indoor Air Quality in University Dormitory (대학교 기숙사의 실내공기질 환경 개선에 관한 연구)

  • Kim, Ho-Jin;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1398-1405
    • /
    • 2008
  • As the structure, material and construction of building develop continuously, so the recent residential buildings are being large, high-rise and group. High-rise residential buildings consume a lot of energy on supplying cold and hot water. As well, high-rise residential buildings bring on discomfortable use and unexpected conditions on account of faucet outlet pressure rise and the difference of water supply pressure between top floor and bottom floor. Thus, the purpose of this study is to research on using conditions of cold and hot water supply system through survey and field measurement in high-rise residential buildings and to analyze problems.

  • PDF

Study on the Measurement of Safety of a High Pressure Vessel (고압용기(高壓容器)의 안전도(安全度) 측정(測定)에 관(關)한 연구(硏究))

  • Yim, Tong-Kyu;Choi, Man-Yong;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 1983
  • There are two weak points in a high pressure vessel, one is a corner, the other is a crack on the base. In order to evaluate safety of a department of a corner and a crack like a starfish on the base in a high pressure vessel (working pressure: $130kg/cm^{2}$), which was made by Marison's Process, we analyzed stress by strain gauge, measured thickness and hardness by ultrasonic testing, and were able to test pressure by water pressure from nondestructive testing. Also destructive testings were applied to measure thickness and to observe microstructure and chemical composition of a corner on the base. From the results of the experiment, values of experiment were satisfied with a condition of application. But, it is considered that a crack on the base is to be investigated with more by Fracture Mechanics.

  • PDF