DOI QR코드

DOI QR Code

Extended inverse impedance method for multiple branches or loops pipeline systems

복합 관수로에서 인버스 임피던스 확장연구

  • Dongwon Ko (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Sanghyun Kim (Department of Civil and Environmental Engineering, Pusan National University)
  • 고동원 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 김상현 (부산대학교 공과대학 사회환경시스템공학과)
  • Received : 2023.12.01
  • Accepted : 2023.12.14
  • Published : 2023.12.15

Abstract

We propose a transient evaluation scheme using a pressure measurement in a complicate pipeline systems. Conservation of mass and momentum equations in time domain can be transformed into a pressure head and flowrate relationship between upstream and downstream point in frequency domain. The impedance formulations were derived to address measured pressure at downstream to evaluate of flowrate or pressure head at any point of system. Both branched pipeline element and looped pipeline element can be generally addressed in the platform of the basic reservoir pipeline valve system. The convolution of time domain response function with measured pressure head from a downstream point provides flowrate or pressure head response in any point of the designated pipeline system. The proposed method was validated through comparison between traditional method of characteristics and the proposed method in several hypothetical systems.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Brunone, B. (1999). Transient test-based technique for leak detection in out-fall pipes, J. Water Resour. Plan. Manag., 125(5), 302-306.
  2. Chaudhry, M.H. (2014). Applied Hydraulic Transients. 3rd Ed., Van Nostrand Reinhold, New York.
  3. Covas, D., Ramos, H., and Almeida, A.B. (2005). "Impulse response method for solving hydraulic transients in viscoelastic pipes", XXXI IAHR Congress. IAHR, Seoul, Korea.
  4. Covas, D.I.C. and Ramos, H.M. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis, J. Water Resour. Plan. Manag., 136(2), 248-257.
  5. Gong, J., Simpson, A.R., Lambert, M.F., Zecchin, A.C., Kim, Y.I., and Tijsseling, A.S. (2013). Detection of distributed deterioration in single pipes using transient reflections, J. Pipeline Syst. Eng. Pract., 4(1), 32-40.
  6. Kapelan, Z.S., Savic, D.A. and Walters, G.A. (2003). A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks, J. Hydraul. Res., 41(5), 481-492.
  7. Kim, S.H. (2007). Impedance matrix method for transient analysis of complicated pipe networks, J. Hydraul. Res, 45(6), 818-828.
  8. Kim, S.H. (2020). Control-oriented impedance matrix and alternative transient control for pipe network systems, Water Resour. Manag., 34(11), 3499-3513.
  9. Lee, J.S., Ko, D.W., Choi, D.Y., Kim, S. (2022) A pressure based flow velocity estimation technique using inverse impedance for simple pressurized pipeline system, J. Korean Soc. Water Wastewater, 36(4), 219-228.
  10. Lee, P.J., Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Leak location in pipelines using the impulse response function, J. Hydraul. Res., 45(5), 643-652.
  11. Liggett, J.A. and Chen, L.C. (1994). Inverse transient analysis in pipe networks, J. Hydraul. Eng., 120(8), 934-955.
  12. Liu, Z. and Simpson, A.R. (2018). Influence of connection stub parameters and valve closure time on transient measurement accuracy of a pressure transducer, Water Sci. Technol. Water Supply, 18(6), 1984-1995.
  13. Stephen, M.L., Lambert, M.F. and Simpson, A.R. (2013). Determining the internal wall condition of a water pipeline in the field using an inverse transient, J. Hydraul. Eng., 139(3), 310-324.
  14. Streeter, V.L. and Wylie, E.B. (1993). Fluid Transients in Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.
  15. Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection, J. Water Resour. Plan. Manag., 133(6), 519-530.
  16. Wang, X.-J., Lambert, M.F. and Simpson, A.R. (2005). Leak detection in pipelines using the damping of fluid transients, J. Water Resour. Plan. Manag., 128(7), 697-711.