• Title/Summary/Keyword: Water Power

Search Result 5,419, Processing Time 0.029 seconds

An analysis on power regeneration of hydrostatic pressure exchanger (정수압방식 동력회수장치의 구동동력 절감량 해석)

  • Ham, Y.B.;Choi, J.H.;Jeong, H.S.;Park, S.J.;Park, J.H.;Yun, S.N.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • This paper presents an energy saving hydrostatic pressure exchanger for sea water desalination equipment. In a reverse osmosis(RO) system for desalinating sea water, more than 70 percent of the supplied sea water, brines which were impassable through RO membrane are bypassed, resulting in high energy losses. In this paper, a hydrostatic pressure exchanger consisting of an embedded water hydraulic piston motor and a water hydraulic piston pump was proposed and investigated in order to recover the energy of the bypassed brines. The pressurized brines are supplied to the embedded water hydraulic piston motor as power sources and the water hydraulic piston pump is driven by the output torque of the embedded water hydraulic piston motor as well as electric motor. Consequently, the energy of the bypassed brines can be recovered. To examine the electric energy saving characteristics of the hydrostatic pressure exchanger, a simulation model was constructed using commercial software and experiments were conducted. Through the results of simulation and experiment, the feasibility of the electric energy saving effect of the proposed hydrostatic pressure exchanger was investigated.

  • PDF

The Study of Thyristor Valve Water Cooling Control Systems (대전력 반도체 정류기 수냉식 냉각 설비 냉매 온도 제어시스템에 관한 연구)

  • 임익헌;류호선
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.230-233
    • /
    • 1999
  • The design and implementation of thyristor water cooling control systems in considered in this pape Coolant water is pumped through the thyristor heat sinks where heat is transferred from the thyristo to the water. This water is then pumped through outdoor air-to-water heat exchangers where heat I transferred to the outside air. Since the water must be pure, it is filtered and de-ionized. Also the water temperature must be below dew-point temperature. Redundant pumps, outdoor heat exchangers, power supply system, controller monitoring system are provided for system reliability and availability.

  • PDF

Analysis of Wall-Thinning Effects Caused by Power Uprates in the Secondary System of a Nuclear Power Plant (원전 2차계통의 출력증강 운전에 따른 배관감육 영향 분석)

  • Yun, Hun;Hwang, Kyeongmo;Lee, Hyoseoung;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • Piping and equipment are degraded by flow-accelerated corrosion (FAC) in nuclear power plants. FAC causes numerous problems and nuclear utilities maintain programs to control FAC. The key parameters influencing FAC are hydrodynamic conditions, water chemistry, and effect of materials. Recently, a nuclear utility has planned slight power uprates in Korea. Operating conditions need to be changed in the secondary system according to power uprates. This study analyzed the effect of wall-thinning caused by power uprates. The change of operation data in the secondary cycle is reviewed, and wall-thinning rates are analyzed in the main lines. As a result, two phase (mixture of water and steam) lines have a greater impact than a water line under power uprate conditions. Also, the quality of steam is the most important factor for FAC in two phase lines.

A Study on Hydro Energy Development of Discharged Cooling Water at the Power Plant (발전소 온배수의 수력에너지 개발에 관한 연구)

  • Kang, K.S.;Lee, D.S.;Kim, J.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.813-818
    • /
    • 2005
  • Cooling seawater of thermal power plant which amounts about 5 cms per 100 MWe has hydro energy of about 3,000 kW at the thermal power plant complex, but this useful hydro energy has not been developed. Therefore, the feasibility study on hydro energy development of three power plants located in the southern and western coast of Korea was performed. Three target power plants are Samcheonpo, Boryeong and Hadong thermal power plant. The design head to discharge cooling water by gravity and the head caused by tidal level in the southwestern coastal area, could be used for the production of electric power. The various alternatives were studied and technical feasibility and economical efficiency were clearly proved.

  • PDF

Solar power and desalination plant for copper industry: improvised techniques

  • Sankar, D.;Deepa, N.;Rajagopal, S.;Karthik, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.59-70
    • /
    • 2015
  • In India, continuous production of electricity and sweet/potable water from Solar power and desalination plant plays a major role in the industries. Particularly in Copper industry, Solar power adopts Solar field collector combined with thermal storage system and steam Boiler, Turbine & Generator (BTG) for electricity production and desalination plant adopts Reverse osmosis (RO) for sweet/potable water production which cannot be used for long hours of power generation and consistency of energy supply for industrial processes and power generation cannot be ensured. This paper presents an overview of enhanced technology for Solar power and Desalination plant for Copper industry making it continuous production of electricity and sweet/potable water. The conventional technology can be replaced with this proposed technique in the existing and upcoming industries.

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

A Study for the Output Increament of the Hydrogen Gas Turbine with Water Injection (물분사 수소 가스터빈의 출력 향상을 위한 연구)

  • Jung, K.S.;Oh, B.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Most of today's energy supply is obtained from fossil fuels. Despite of high energy density, higher store efficiency and long mileage, fossil fuels cause environmental pollution and their reserves are limited. In this study pure hydrogen gas and oxygen gas are burned without the emission of pollution. A gas turbine is used to obtain power. Water is injected into a combustor, which prevents overheating and recovers cooling heat. Excessively supplied water is recirculated. With variation of mass flow rate and equivalence ratio, the affection of water injection rate and the temperature of injected water on efficiency and power are experimented. Injected water gets cooling heat, is expanded from liquid to vapor and raises the thermal efficiency. It is enable to determine the rate of water injection, which makes the maximum power. The increase of temperature of water injection raises the efficiency of the system.

  • PDF

Test of Heat Recovery Performance of a Microturbine (마이크로터빈의 열회수 성능시험)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop;Chang, Se-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.629-635
    • /
    • 2008
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, the microturbine CHP (combined heat and power) system is relatively compact and easy to maintain. Generating hot water or steam is usual method of heat recovery from the microturbine. In this work, a heat recovery unit producing hot water was installed at the exhaust side of a 30 kW class microturbine and its performance characteristics following microturbine power variation was investigated. Heat recovery performance has been compared for different operating conditions such as constant hot water temperature and constant water flow rate. In particular, the influence of water flow rate and hot water temperature on the recovered heat was analyzed.

Analysis on Negative Media Report of Wolsong Nuclear Power Plant's Heavy Water Leakage: Analysis on Daily Newspaper Report of Wolsong Nuclear Power Plant's Heavy Water Leakage Incident during the Month of October 1999 (월성 원자력발전소 중수 누출에 대한 언론의 부정적 보도 분석 : 주요 일간지의 1999년 10월 한 달간 월성 원자력발전소 중수 노출 사고 기사 내용 분석)

  • Lee, Sang Dae
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.203-210
    • /
    • 2012
  • Nuclear power provides 30% of our country's power, which acts as one of the most important power sources. But on March 11, 2011, the earthquake that hit Northeast Japan with a 9.0 magnitude, known as the Fukushima Reactor Leak Incident has created fear in the public's mind that 'nuclear power is unstable'. The reason for such distrust are many but inaccurate reports of the incident by the media has added to the fear. This paper will analyze the contents of the media report of the heavy water leakage in reactor 3 at the Wolsong Nuclear Power Plant on October 4, 1999 to discover the problematic areas and ascertain a more appropriate method of media coverage.