• Title/Summary/Keyword: Water Overtopping

Search Result 112, Processing Time 0.035 seconds

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

A Study of Hydraulic Characteristics in Front of the Seawall under the Coexistence of Wave and Wind (파랑과 바람 공존장에서의 호안 전면 수리특성 검토)

  • Shim, Kyu-Tae;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.575-586
    • /
    • 2020
  • In this study, a two-dimensional hydraulic model test was conducted to examine the hydraulic phenomena that occur around the seawall when wave and wind coexist. Based on recent seawall repair and reinforcement examples, the experimental section was constructed under the condition of installing wave dissipation blocks on the safety surface of four different representative seawalls. Water level fluctuation, reflection, overtopping and wave pressure characteristics according to external force change were reviewed. It was confirmed that the top concrete shape of the seawall is the most important factor of the hydraulic characteristics that appear in front of the seawall, and the tendency is more pronounced when wind acts. Even in the case of vertical type seawall, when wind of 3 m/s~5 m/s occurs, the amount of overtopping increases to about 5%~12%. In the case of wave pressure, it was confirmed from the experimental results that the value increased from about 1.5 to 2.2 times in front of the top of concrete block. In addition, it was confirmed that when the shape of the seawall was different, the range of change in the hydraulic characteristics appeared larger. Therefore, when designing a seawall of a new shape, a more detailed review of the hydraulic characteristics should be accompanied based on these experimental results.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.

Resilience Assessment of Dams' Flood-Control Service (댐 홍수조절기능의 회복탄력성 산정)

  • Kim, Byungil;Shin, Sha Chul;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1919-1924
    • /
    • 2014
  • Recently, due to the climate change, the frequency and intensity of extreme rainfall events have been continuously increased in regions of South Korea. As a consequence, safety issues have been raised especially in the hydrologic safety of old dams designed and constructed by the old standards. In general, for improving hydrologic safety of existing dams, two options are considered: 1) raising dam crest; and 2) constructing or expanding an emergency spillway. In this process, the main criteria of alternative selection are overtopping possibility and cost efficiency of each alternative. This approach is easy to implement but it is subject to major limitation for the proper evaluation of alternatives, overlooking downstream flood damages by any controlled flow of water that is intentionally released from dams to eliminate the possibility of overtopping. Therefore, this study suggests a framework for evaluating the dam safety strengthening alternatives in terms of a comprehensive flood control by applying the concept of resilience. The case study shows that the resilience-based evaluation framework which considering downstream flood damages is effective in the selection of dam safety strengthening alternatives.

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.469-484
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

Evaluation of Levee Reliability by Applying Monte Carlo Simulation (Monte Carlo 기법에 의한 하천제방의 안정성 평가)

  • Jeon, Min Woo;Kim, Ji Sung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.501-509
    • /
    • 2006
  • The safety of levee that depends on the river flood elevation has been regarded as very important keys to build up various flood prevention systems. However, deterministic methods for computation of water surface profile cannot reflect the effect of possible inaccuracies in the input parameters. The purpose of this study is to develop a methodology of uncertainty computation of design flood level based on steady flow analysis and Monte Carlo simulation. This study addresses the uncertainty of water surface elevation by Manning's coefficients, design discharges, river cross sections and boundary condition. Monte Carlo simulation with the variations of these parameters is performed to quantify the variations of water surface elevations in a river. The proposed model has been applied to the Kumho-river. The reliability analysis was performed within 38.5 km (95 sections) reach considered the variations of the above-mentioned parameters. Overtopping risks were evaluated by comparing the elevations of the flood condition with the those of the levees. The results show that there is a necessity which will raise the levee elevation between 1 cm and 56 cm at 7 sections. The model can be used for preparing flood risk maps, flood forecasting systems and establishing flood disaster mitigation plans as well as complement of conventional levee design.

Damage Types of Levee and its Maintenance and Repair (제방의 손상 유형 및 보수보강)

  • Moon, Dae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.144-169
    • /
    • 2010
  • In 2002, property loss caused by failure or leakage of existing river levee structures was about 1.8 trillion in Korean Won, and furthermore in which damages of river structures are getting more severe due to characteristics of extremely extraordinary rain such as torrential rain in the locality or guerrilla heavy rain. In this regards, this paper collects and analyzes those damage records and costs for repair by statistic method, and moreover categorizes the causes of failure, erosion and overtopping of levee structures in large and small scale rivers threatened frequently by typhoon and heavy rainfall. It is believed that the results from the analyses can be used as a basic source in developing criteria of standards for design, construction, maintenance and inspection(or diagnosis) of hydraulic structures such as levee and drain conduit.

  • PDF

Flood Damage Reduction Estimation for 4 Major River Restoration Project Applying Overtopping Risk of Levee Using Bayesian MCMC (Bayesian MCMC에 의한 하천제방 월류위험도 적용 4대강살리기사업 홍수피해경감편익 산정 방안)

  • Yi, Choong-Sung;Lee, Han-Goo;Chung, Nahm-Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.448-452
    • /
    • 2011
  • 기존의 하천개수사업 치수경제성분석에서는 홍수피해경감편익 산정시 계획홍수위 이하의 홍수에 대해서 제방이 완벽히 방어한다는 가정 하에 제방으로 인한 피해경감액을 편익으로 산정하고 있다. 그러나 전통적 빈도해석 방법 및 수리수문 모형에 내재된 매개변수 불확실성으로 인하여 특정 하천구간에서 산정된 계획빈도 이하의 홍수위가 제방고에 해당하는 임계사상을 초과할 수도, 반대로 계획빈도 이상의 홍수위가 임계사상을 초과하지 않을 가능성도 있다. 이러한 불확실성은 수공구조물의 붕괴에 대한 잠재성을 가진 중요한 요인으로도 작용한다. 본 연구는 이러한 잠재적 위험도를 제방 월류위험도로 정의하고 이를 Bayesian MCMC에 의해 산정하는 방법을 제시하였다. 제시된 방법론은 4대강살리기사업 전 후에 대해 적용하였으며, 계획홍수위 저하에 따른 잠재적 홍수위험 감소 효과를 정량적으로 나타낼 수 있었다. 월류 위험도는 빈도별 홍수피해액의 피해발생 확률로서도 적용될 수 있으며, 이는 물리적 침수구역 설정의 어려움에 따른 홍수피해액 과다산정 문제 해결의 대안으로서도 의미가 있다.

  • PDF

Experimental study of Runup and Overtopping Wave Velocities due to Wave Breaking (쇄파에 의한 처오름 및 월파 발생시 유속에 대한 실험적 연구)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.592-596
    • /
    • 2007
  • 본 연구에서는 구조물 전면에서 발생하는 권파와 그 이후 발생하는 처오름과 월파의 유속장을 계측하기 위하여 수리모형실험을 실시하였으며, 실험결과를 이용하여 월파의 유속분포를 나타내는 경험식을 제안하였다. 구조물 전면에서 내습파랑이 쇄파된 이후, 구조물을 월파하는 동안에 유체의 흐름은 넓은 연행기포의 지역을 형성하며 다위상(multiphase)상태가 된다. 쇄파에 의한 구조물 주위에서의 유체흐름 중 연행기포가 없는 영역의 유속 측정에는 입자화상유속계(particle image velocimetry, PIV)기법을, 연행기포 영역에서의 유속 측정에는 기포화상유속계(particle image velocimetry, BIV)기법을 적용하였다. 두 기법을 이용하여 측정된 유속장으로부터 구조물 주위에서의 쇄파, 처오름 및 월파시의 최대유속을 계측하였다. 구조물 위로 월파된 유체 흐름 분포는 비선형적인 특성을 보여주며, 시간별 최대유속은 주로 유체의 전면부에서 발생하는 것으로 나타났다. 또한 무차원화된 유속분포로부터 구조물 위에서의 월파시 유속분포가 자기상사성(self-similarity)을 갖는다는 것을 알 수 있었으며, 이를 이용하여 월파의 유속분포를 위한 실험적 경험식을 제시하였다.

  • PDF