• Title/Summary/Keyword: Water Loss Management

Search Result 334, Processing Time 0.16 seconds

A Development of the Guideline for the Heating Water Quality in Apartment Houses with District Heating System (공동주택 지역난방 수질기준 설정에 관한 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Woo, Dal-Sik;Oh, June;Ahn, Chang-Koo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.493-498
    • /
    • 2008
  • Particles or deposit formed by corrosion of the pipe material bring about bad influences on the heating systems with inconvenience, energy loss and so on. In order to obtain the non-corrosive environments, the circulation hot water should properly be treated in several ways to satisfy one or more conditions of the followings: suitable pH-level, low hardness, low oxygen content, low conductivity, low level of chlorides and sulphur compounds and low level of solid particles. This experimental study was carried out to develope the new guidelines on the optimal water quality and directions for water quality management in heating systems. As results, it was recommended that the heating water be maintained pH-level not less than 8, hardness contents as $CaCO_3$ no more than 50 mg/L, turbidity no more than 10 NTU and T-Fe contents 1 mg/L below.

  • PDF

The Impact of Environmental Characteristics in the Geumho River Watershed on Stream Water Quality (금호강 유역의 환경특성이 하천수질에 미치는 영향)

  • Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.85-98
    • /
    • 2003
  • There has recently been an increasing interest of the watershed management as a solution to a wide range of problems related water environment, therefore this study attempted to construct the environment information system to monitor the Geumho River watershed, and to evaluate the impacts of the watershed characteristics on stream water quality. A detailed GIS database to analyze the environmental characteristics at the subwatershed units, including 1:25,000 scale topographical maps, detailed soil maps, land use, 10m-resolution DEMs, roads, streams, vegetation index(NDVI) calculated from Landsat TM imagery, rainfall, and soil loss using RUSLE, is compiled for the study area. The set of variables representing watershed urbanization or industrialization, residential and commercial landuse, industrial landuse, and road area have significantly negative(-) relationship with water quality variables(BOD, COD, SS, T-N, T-P). On the other hand, watershed indicators related to natural environmental conditions, forest cover and vegetation index(NDVI) in each subwatershed were significantly positive(+) relationship with water quality. Three other variables, agricultural landuse, amount of fertilizer and pesticides, and potential soil loss, were not significant in explaining the correlations between watershed environment and stream water quality.

  • PDF

Estimation of Irrigation Water Amounts for Farm Products based on Various Soil Physical Properties and Crops (다양한 토양의 물리적 특성과 작물에 따른 밭작물 관개용수량 산정)

  • Lee, Taehwa;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Crop damages due to agricultural drought has been increased in recent years. In Korea, water resources are limited indicating that proper management plans against agricultural drought are required for better water-use efficiency in agriculture. In this study, irrigation intervals and amounts for various crops and soil physical properties (sandy and silt loams) were estimated using the IWMM model. Five different crops (soybean, radish, potato, barley and maize) at the Bangdong-ri site in Chuncheon were selected to test the IWMM model. IWMM assessed agricultural drought conditions using the soil moisture deficit index (SMDI), and irrigation intervals and amounts were determined based on the degree of agricultural drought (SMDI). Additionally, we tested the effects of surface irrigation and sprinkler irrigation methods and various irrigation intervals of 2, 3, 5 and 7 days. In our findings, the irrigation intervals of 5 and 7 days showed the minimum rrigation amounts than others. When we considered that the intervals of 3 or 5 days are usually preferred to fields, the interval of 5 days was determined in our study. The estimated irrigation amounts for different crops were shown as maize > radish > barley > soybean > potato, respectively. The irrigation amounts for maize and barley were highly affected by soil properties, but other crops have less differences. Also, small differences in irrigation amounts were shown between the surface and sprinkler irrigation methods. These might be due to the lack of consideration of water loss (e.g., evapotranspiration, infiltration, etc.) in IWMM indicating model structural uncertainties. Thus, possible water loss (e.g., evapotranspiration, infiltration) need to be considered in application to fields. Overall, IWMM performed well in determining the irrigation intervals and amounts based on the degree of agricultural drought conditions (SMDI). Thus, the IWMM model can be useful for efficient agricultural water resources management in regions at where available water resources are limited.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.829-841
    • /
    • 2018
  • An experiment was conducted for the OECD/NEA ROSA-2 Project using the large-scale test facility (LSTF), which simulated a 17% hot leg intermediate-break loss-of-coolant accident in a pressurized water reactor (PWR). In the LSTF test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing, and water remaining occurred on the upper core plate in the upper plenum. Results of the uncertainty analysis with RELAP5/MOD3.3 code clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges. For studying the scaling problems to extrapolate thermal-hydraulic phenomena observed in scaled-down facilities, an experiment was performed for the OECD/NEA PKL-3 Project with the Primarkreislaufe Versuchsanlage (PKL), as a counterpart to a previous LSTF test. The LSTF test simulated a PWR 1% hot leg small-break loss-of-coolant accident with steam generator secondary-side depressurization as an accident management measure and nitrogen gas inflow. Some discrepancies appeared between the LSTF and PKL test results for the primary pressure, the core collapsed liquid level, and the cladding surface temperature probably due to effects of differences between the LSTF and the PKL in configuration, geometry, and volumetric size.

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

A Study on the Manufacture of the Water Sensor (물방울 감지 센서의 제작에 관한 연구)

  • Kim, Jin Kook;Lee, Yun Min
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.37-45
    • /
    • 2014
  • This paper is a study of the water sensor using a coaxial cavity resonator. This water sensor uses the resonant frequency variation of the coaxial cavity resonator when there is a water drop of the used coaxial cavity resonator. And we made resonant frequencies by controlling the input voltage of the oscillator which will be mainly resonated in the coaxial cavity resonator. First, we made the coaxial cavity resonator by simulating the resonator structure with the proposed size and we expect the resonant frequency from the simulation and then we decide the VCO from the result. Second, we made the water drop detecting sensor circuit and measured the water sensor. We decided the size of the resonator as inner conductor 5mm, outer conductor 14mm, the height of resonator 9.5mm, and the height of the glass 6mm from the simulated result. The simulated resonant frequencies are 3.09GHz and we made the VCO frequency ranges from 2.56GHz to 3.2GHz. The measured resonant frequency is 2.97GHz and the return loss is under -8. 4 dB at the center frequency. When the water is dropped on the glass of the resonator, the voltage has changed from 690mV to 145mV. It shows the proposed water sensor can detect the water by the resonant frequency variation of the resonator.

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.