• Title/Summary/Keyword: Water Leakage

Search Result 894, Processing Time 0.03 seconds

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF

Geotechnical Consideration on the Conservation of the Muryong Royal Tomb (무령왕릉의 보존을 위한 지반공학적 고찰)

  • Suh, Mancheol
    • Journal of Conservation Science
    • /
    • v.8 no.1 s.11
    • /
    • pp.40-50
    • /
    • 1999
  • A geotechnical research including observation of the movement of wall-structure, monitoring of groundwater, non-destructive geophysical investigation was conducted to workout a countermeasure to conserve the Muryong Royal Tomb which is the most extinguishable cultural property of the Baekje dynasty. Movement of the structure of Muryong Royal Tomb generally arises to the front chamber and its amplitude in a rainy season is twice of that in the dry season. It represents serious problem concerned about structural safety of the royal tomb in the rainy season. Movement of wall-structure is caused due to the rain infiltration through cracks in the quicklime layer within the soil mound on the top of the royal tomb and the change of the temperature inside of the tomb. Cracks found around the Muryong Royal Tomb are mostly spread in NW and SE of the tomb structure and it harmonizes with the direction of movement of wall-structure of the Muryong Royal Tomb. Counter-plans for safety and prevention of water-leakage that obstruct the movement of wall structures towards the direction of south are very important for the conservation of Muryong Royal Tomb. After getting rid of the cause of structural change by the restoration of the front chamber of the Muryong Royal Tomb, it needs to reinforce the quicklime layer for prevention of waterleak.

  • PDF

Evaluation of Physical Property and Material Characteristics for Stained Glass in the Yakhyeon Catholic Church, Korea (약현성당 스테인드글라스의 재료학적 특성과 물성평가)

  • Cho, Ji Hyun;Lee, Chan Hee;Kang, Myeong Kyu
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.425-436
    • /
    • 2016
  • The Yakhyeon catholic church (Historic Site No. 252 in Korea) that was constructed in 1892 has been the first western brick structure to ever have existed and one of the most important historical materials in the Korean modern architecture. After a fire had broken out at the catholic church in 1998, the stained glass on the back wall, the slab glass (dalle de verre) introduced by Lee Nam Guy in 1974, was repaired in 1999 because of singe scorch and water leakage. An analysis of the coloration elements showed that yellow, red and green included Zn, K and Cd, respectively. The glass of red contained Se, dark green contained Mn and Cr, and blue contained Pb and S. According to material analysis, the masonry joint was identified dolomite ($CaMg(CO_3)_2$) and calcite ($CaCO_3$), which was observed plate, columnar, rhombic and square of crystalline particles. Meanwhile, ultrasonic velocity in the stained glass recorded low speed in the middle and lower right of the window (an average of 4,130 m/s). And the joint was measured the lowest physical properties of the top left and middle of the window (an average of 2,053 m/s). This study have showed that extensive physical damage was founded to the left and middle rather than the right side. In this respect, more research in needed to conserve the correlation between color and physical properties.

Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano (NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Yoon, Kyeong Kyu;Lee, Hak bong;Song, Jae Mo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Background: This study was conducted to investigate the effects of NaCl concentration on the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of Crepidiastrum sonchifolium. Methods and Results: As treatments, we subjected C. sonchifolium plants to four different concentrations of NaCl (0, 50, 100 and 200 mM). We found that the photosynthetic parameters maximum photosynthesis rate (PN max), net apparent quantum yield (Φ), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) were significantly reduced at an NaCl concentration greater than 100 mM. In contrast, there was an increase in water-use efficiency with increasing NaCl concentration, although in terms of growth performances, leaf dry weight, root dry weight, stem length, and total dry weight all decreased with increasing NaCl concentration. Furthermore, leakage of electrolytes, as a consequence of cell membrane damage, clearly increased in response to an increase in NaCl concentration. Analysis of the polyphasic elevation of chlorophyll a fluorescence transients (OKJIP) revealed marked decrease in flux ratios (ΦPO, ΨO and ΦEO) and the PIabs, performance index in response to treatment with 200 mM NaCl, thereby reflectings the relatively reduced state of photosystem II. This increase in fluorescence could be due to a reduction in electron transport beyond Q-A. We thus found that the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of C. sonchifolium significantly increased in response to treatment with 200 mM NaCl. Conclusions: Collectively, the findings of this study indicate that C. sonchifolium shows relatively low sensitivity to NaCl stress, although photosynthetic activity was markedly reduced in plants exposed to 200 mM NaCl.

Commissioning of a micro-MLC (mMLC) for Stereotactic Radiosurgery (방사선수술용 4뱅크 마이크로 다엽콜리메이터의 인수 검사)

  • Jeong, Dong-Hyeok;Shin, Kyo-Chul;Kim, Jeung-Kee;Kim, Soo-Kon;Moon, Sun-Rock;Lee, Kang-Kyoo
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • The 4 bank mico-MLC (mMLC; Acculeaf, Direx, Isral) has been commissioned for clinical use of linac based stereotactic radiosurgery. The geometrical parameters to control the leaves were determined and comparisons between measured and calculated by the calculation model were performed in terms of absolute dose (cGy/100 MU). As a result of evaluating calculated dose for various field sizes and depths of 5 and 10 cm in water in the geometric condition of fixed SSD (source to surface distance) and fixed SCD (source to chamber distance), most of differences were within 1% for 6 MV and 15 MV x-rays. The penumbral widths at the isocenter were approximately evaluated to 0.29~0.43 cm depending on the field size for 6 MV and 0.36~0.51 cm for 15 MV x-rays. The average transmission and leakage for 6 MV and 15 MV x-rays were 6.6% and 7.4% respectively in single level of leaves fully closed. In case of dual level of leaves fully closed the measured transmission is approximately 0.5% for both 6 MV and 15 MV x-rays. Through the commissiong procedure we could verify the dose characteristics of mMLC and approximately evaluate the error ranges for treatment planning system.

  • PDF

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

Electrical Characteristics Measurement of Eddy Current Testing Instrument for Steam Generator in NPP (원전 증기발생기 와전류검사 장치의 전기적 특성 측정)

  • Lee, Hee-Jong;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.465-471
    • /
    • 2013
  • A steam generator in nuclear power plant is a heatexchager which is used to convert water into steam from heat produced in a nuclear reactor core, and the steam produced in steam generator is delivered to the turbine to generate electricity. Because of damage to steam generator tubing may impair its ability to adequately perform required safety functions in terms of both structural integrity and leakage integrity, eddy current testing is periodically performed to evaluate the integrity of tubes in steam generator. This assessment is normally performed during a reactor refueling outage. Currently, the eddy current testing for steam generator of nuclear power plant in Korea is performed in accordance with KEPIC & ASME Code requirements, the eddy current testing system is consists of remote data acquisition unit and data analysis program to evaluate the acquired data. The KEPIC & ASME Code require that the electrical properties of remote data acquisition unit, such as total harmonic distortion, input & output impedance, amplifier linearity & stability, phase linearity, bandwidth & demodulation filter response, analog-to-digital conversion, and channel crosstalk shall be measured in accordance with the KEPIC & ASME Code requirements. In this paper, the measurement requirements of electrical properties for eddy current testing instrument described in KEPIC & ASME Code are presented, and the measurement results of newly developed eddy current testing instrument by KHNP(Korea Hydro & Nuclear Power Co., LTD) are presented.

Recycling technology of animal fats and protein from solid wastes of leather processing (피혁 가공 폐기물로부터 동물성 유지와 단백질의 회수 및 재자원화 기술 연구)

  • Yun, Jong-Kook;Paik, In-Kyu;Cho, Do-Kwang;Park, Jae-Hyung;Choi, Ju-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.98-109
    • /
    • 2002
  • Each kinds of the leather process wastes which is occurred in the leather making process is almost more than 50% on the basis of the raw hide. The emitted process wastes are important oil and fats and protein resources because they are composed of animal oil and fats and fibrous protein. But most of them are incinerate or filled up simply as the industrial wastes without applying to recycling into the other use. Thus the problems of environmental pollution are becoming more critical and the processing cost of the leather process wastes (40,000~60,000 won) is a heavy burden on the production cost. Because the organic wastes such as fleshing scrap, pelt scrap are high fetid, its unlawful abandonment without being processed properly causes the occurrence of secondary pollution by an offensive odor and leakage of waste water. Thus we made the re-resource experiments in order to resolve this problems. The principal contents of this study are to process the collected leather waste scrape through separate the oil and fat ingredients with various propert by processing various chemicals and enzymes on the next effector. The re-resource application of separated oil and fat ingredients produced chemical for leather applicable to manufacturing process of leather through chemical transformation process(sulphation reaction, sulphitation reaction etc.) of oil and fats.

  • PDF

A Study on Selection of SO2 Resistant Tree Species - I. Leaf Disk Experiment - (SO2에 대한 내성수종(耐性樹種)의 선발(選拔)을 위한 기초연구(基礎研究) - I. 엽조직(葉組織) 실험(實驗) -)

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.223-228
    • /
    • 1988
  • To select $SO_2$-resistant tree species, leaf disks of 6mm in diameter, cut from the leaves of 6 species (Wistaria floribunda, Magnolia obovata, Rosa multiflora, Liriodendron tulipifera, Robinia pseudo-acacia and Acer palmatum) were floated on 25ml of testing medium and placed on laboratory under fluorescent lamp (1,500 Lux) for 20 hours. Chlorophyll content and acidity of the testing medium were measured. Testing medium was prepared by diluting $H_2SO_4$, $H_2SO_3$ and $Na_2SO_4$ with distilled water for various stoichiometric $SO_2$ concentrations, 0, 25, 50, 100 and 250 ppm. Total chlorophyll content was more decreased after treatment than before treatment, and was decreased more severely in $H_2SO_3$ sources, followed by $H_2SO_4$ and $Na_2SO_4$, sources. Decreasing rate of total chlorophyll content was generally large in Acer palmatum. Magnolia obovata and Wistaria floribunda, and was relatively small in Rosa multiflora, Liriodendron tulipifera and Robinia pseudo-acacia. Decreasing rate of chlorophyll content may be useful index for judging susceptifility of the leaf to $SO_2$. The acidity of the testing medium was generally decreased after treatment, and it means that cell leakage was occurred during treatment. The differences in medium acidity between before and after treatment may be poot index for susceptibility of the leaf to $SO_2$ owing to the difference among tree species in development of leaf mesophyll, acidity maintaining mechanism and butter capacity of the leaf tissue.

  • PDF

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.