• Title/Summary/Keyword: Water Infiltration Rate

Search Result 200, Processing Time 0.03 seconds

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

Estimation of Water Quality Variation in Sewer Network using MOUSE TRAP Model (MOUSE TRAP 모델을 이용한 하수관거내 수질변화 예측)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.743-752
    • /
    • 2009
  • One of the major problems associated with operation of domestic sewer lines involves hydraulic problems such as insufficient conveyance capacity, exceeding maximum velocity, and deficiency of minimum velocity. It has also been pointed out that influent concentration lower than design concentration of pollutants, which is mainly caused by unidentified inflow and infiltration, degrades the operational efficiency of many sewage treatment plants (STPs). A computer-added analysis method supporting a coupled simulation of sewage quality and quantity is essentially required to evaluate the status of existing STPs and to improve their efficiency by a proper sewer rehabilitation work. In this study, dynamic water quality simulations were conducted using MOUSE TRAP to investigate the principal parameters that governs the changes of BOD, ${NH_4}^+$, and ${PO_4}^{3-}$3- concentrations within the sewer networks based on data acquired through on-site and laboratory measurements. The BOD, ${NH_4}^+$ and ${PO_4}^{3-}$3- concentrations estimated by MOUSE TRAP was lower than theoretical pollution loads because of sedimentation and decomposition in the sewer. The results revealed that sedimentation is a most important factor than other biological reactions in decreasing pollutant load in the sewers of C-city. The sensitivity analysis of parameters pertaining to water quality changes indicated that the effect of the BOD decay rate, the initial DO concentration, the half-saturation coefficient of dissolved BOD, and the initial sediment depth is marginal. However, the influence of settling rate and temperature is relatively high because sedimentation and precipitation, rather than biological degradation, are dominant processes that affect water quality in the study sewer systems.

Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas (도시지역에 적용된 LID 기법의 강우시 수문특성 및 물순환 평가)

  • Choi, Hyeseon;Hong, Jungsun;Jeon, Minsu;Geronimo, Franz Kevin;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • High impervious surfaces increase the surface runoff during rainfall and reduces the underground infiltration thereby leading to water cycle distortion. The distortion of water cycle causes various urban environmental problems such as urban flooding, drought, water pollutant due to non-point pollution runoff, and water ecosystem damage. Climate change intensified seasonal biases in urban rainfall and affected urban microclimate, thereby increasing the intensity and frequency of urban floods and droughts. Low impact development(LID) technology has been applied to various purposes as a technique to reduce urban environmental problems caused by water by restoring the natural water cycle in the city. This study evaluated the contribution of hydrologic characteristics and water cycle recovery after LID application using long-term monitoring results of various LID technology applied in urban areas. Based on the results, the high retention and infiltration rate of the LID facility was found to contribute significantly to peak flow reduction and runoff delay during rainfall. The average runoff reduction effect was more than 60% at the LID facility. The surface area of the LID facility area ratio(SA/CA) was evaluated as an important factor affecting peak flow reduction and runoff delay effect.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

Rainfall-induced shallow landslide prediction considering the influence of 1D and 3D subsurface flows

  • Viet, Tran The;Lee, Giha;An, Hyunuk;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.260-260
    • /
    • 2017
  • This study aims to compare the performance of TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability model) and TiVaSS (Time-variant Slope Stability model) in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. The present study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( index), which was developed for addressing point-like landslide locations. In addition, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models have characteristics that are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30% to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

  • PDF

An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings (NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Shin, Yong-Suk;Yang, Yu-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2007
  • One of the most sensitive design specifications to be considered is infiltration and external pore-water pressures on underground structure construction. Development of pore-water pressure may accelerate leakage and consequently cause deterioration of the lining. In this paper, the development of pore-water pressure due to malfunctioning of drainage system and its potential effect on the linings are investigated using physical model tests. The deterioration procedure was simulated by controlling both permeability and flow rate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanism of pore-water pressure development on the tunnel lining. In addition, they showed that controlling flow rate is more effective method fur simulating deterioration procedure than permeability control. The laboratory model tests were reproduced using coupled numerical method, and showed that the effect of deterioration of drainage system can be theoretically expected using coupled numerical modeling method.

Estimation of Groundwater Recharge from Precipitation in a Small Basin (소유역의 강수에 의한 지하수 함양량 산정)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.397-406
    • /
    • 2004
  • It is necessary to estimate the groundwater recharge rate properly to evaluate the reasonable development amount of groundwater in a specific site. A small basin in Wicheon River Basin located in the Province of Kyungsangbuk-Do is selected to calculate the groundwater recharge rate. Average annual groundwater recharge rates are calculated from 1992 to 1997 because wet and draught year are contained during this period. In the calculation, baseflow separation method and SCS-CN method are applied to this area. As a result of estimation by baseflow separation method, the value of groundwater recharge ratio is varied between 11.9% and 18.7%. The average annual recharge rate is 14.5%. The average annual recharge rate calculated by SCS-CN method is varied between 7.9% and 20.9%. The average annual recharge rate in the calculation period is 15.1%. The results show that the average annual recharge amount from infiltration in the study basin is 141.6mm and 147.4mm in each estimation method. It appears that the average annual recharge amount calculated for the long period containing wet and draught year by the two methods is useful for groundwater development.

An analysis of storage and runoff reduction characteristics using planter box in architectural LID system (건축형 LID 시스템에서 Planter Box를 활용한 저류 및 유출저감 특성 분석)

  • Kim, Byung Sung;Kim, Jae Moon;Baek, Jong Seok;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.219-226
    • /
    • 2019
  • Recently, research about Low-Impact Development (LID) techniques has been expanded due to problems with the effects of climate change and urbanization that have been increasing. LID technology is used to control flood damage environmentally to reduce runoff and is reduce runoff on city also restore into previous water circulation system from present developed city. However, studies about quantitative data of LID techniques are insufficient. Therefore in this study, the Curve Number (CN) was calculated with the Planter Box, which is storage type LID technology to conduct the water circulation (infiltration, runoff, overflow) analysis. Rainfall intensity scenario (60.4 mm/hr, 83.1 mm/hr, 97.4 mm/hr, 108.2 mm/hr) about water circulation analysis of Planter Box is selected on the basis of probable rainfall intensity table. According to the experimental results, the storage rate of rainwater in Building Planter Box and Street Planter Box was 43.5% to 52.9% and 33.4% to 39%, respectively. In addition, CN value is estimated to 83 at the Planter box and the runoff reduction effect by applying Horton's infiltration capacity curve showed on 51% to 98%.

Reduction of waterborne microorganisms in treated domestic wastewater for reuse in agriculture: Comparison between floating media filter and sand filter

  • Semsayun, Chalanda;Chiemchaisri, Wilai;Chiemchaisri, Chart;Patchanee, Nopparat
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • This study aims to investigate the use of a floating media filter (FMF) to eliminate waterborne microorganism in treated domestic wastewater for reuse in agriculture. A conventional sand filter (SF) was used concurrently to compare treated water quality. The total/fecal coliforms and somatic coliphage were employed as fecal indicators. The result showed that the FMF was fed with 3 times higher infiltration rate ($15m^3/m^2.h$) than that in the SF ($5m^3/m^2.h$), in which both filters gave similar coliform removal at 6 hours operation. The somatic coliphage elimination tended to increase with operational time for the FMF while that of the SF showed decreasing trend. When a 24 hour continuous operation was applied for the FMF, it showed better removal of somatic coliphage (78%), fecal coliforms (60%) and total coliforms (56%) than that of 6 hour operation. In conclusion, the FMF gave better performance than the SF did by producing a good quality of treated water for agriculture in terms of waterborne microorganisms including turbidity and suspended solids.

Predicting Dynamic Behaviors of Highway Runoff using A One-dimensional Kinematic Wave Model (일차원 kinematic wave 모형을 이용한 고속도로 강우 유출수의 동적 거동 예측)

  • Kang, Joo-Hyon;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • A one-dimensional kinematic wave model was used to calculate temporal and spatial changes of the highway runoff. Infiltration into pavement was considered using Darcy's law, as a function of flow depth and pavement hydraulic conductivity ($K_p$). The model equation was calculated using the method of characteristics (MOC), which provided stable solutions for the model equation. 22 storm events monitored in a highway runoff monitoring site in west Los Angeles in the U.S. were used for the model calculation and evaluation. Using three different values of $K_p$ ($5{\times}10^{-6}$, $10^{-5}$, and $2{\times}10^{-5}cm/sec$), total runoff volume and peak flow rate were calculated and then compared with the measured data for each storm event. According to the calculation results, $10^{-5}cm/sec$ was considered a site representative value of $K_p$. The study suggested a one-dimensional method to predict hydrodynamic behavior of highway runoff, which is required for the water quality prediction.