• Title/Summary/Keyword: Water Hydraulic

Search Result 3,090, Processing Time 0.024 seconds

Removal of Ammonia-N by using the Immobilized Nitrifier Consortium in Aquaculture System (양어장에서 고정화된 질화세균군을 이용한 암모니아 질소 제거)

  • SUH Kuen-Hack;KIM Yong-Ha;AHN Kab-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.868-873
    • /
    • 1997
  • Nitrifier consortium entrapped in Ca and Ba-alginate beads were packed into two reactors and studied for removing ammonia-nitrogen in aquaculture system. The ammonia-nitrogen concentration of the influent was continually kept about 2 ppm. At the hydraulic residence time of 0.6 hours, ammonia-nitrogen removal amount of two reactors was about 52.6 and 51.0 g $NH_3-N/m^3/day$, respectively. The ability of adjusting to an impulsive leading which was happened according to variations of HRT was better at Ba-alginate reactor, but its discrepancy was not so large. At the respect of removing ammonium-nitrogen, two reactors showed the similar ability of treating recirculating water.

  • PDF

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

A Study on Improving Installation Guideline of Facilities to Protect Groundwater Contamination: Applications of Packer Grouting to Contaminated Wells (지하수오염방지 시설기준의 개선에 관한 연구:지하수오염관정에의 팩커그라우팅 적용사례)

  • Choo, Chang-Oh;Ryu, Jong-Heum;Cho, Heuy Nam;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.293-304
    • /
    • 2013
  • Because the present groundwater law broadly regulates a simple and impractical guideline ignoring aquifer characters and geology, general purpose facilities for protection of groundwater contamination is still considered unsatisfactory to ensure groundwater resources. In recent, there have been growing attempts in the packer development as crucial techniques and devices for groundwater protection. This study investigated the application of packer grouting techniques to contaminated groundwaters of two well sites in the Andong and Yeongi areas, both of which revealed a satisfactory effect with improved water quality: 94% decrease in turbidity at the Andong area and 60% decrease in $NO_3$-N, respectively. Based on aquifer characters including geology, weathering depth, fracture pattern, hydraulic gradient, and the flow path of contaminants, the integrated properties of groundwater contamination should be evaluated and treated with the help of accurate analyses such as bore hole imaging and monitoring data. Packer grouting and casing on well to ensure the useful aquifer free of contaminant are expected to play important role in inhibiting the inflow of contaminants when adequately applied. Therefore it is concluded that these can serve as reliable tools in remediation and protection of contaminated groundwater as well as efficient utilization of groundwater.

Floc Property of Yeongsan Cohesive Bed Sediment with Respect to Salinity and Sediment Concentration (점착성 퇴적물의 염분과 퇴적물농도에 따른 플럭 특성: 플럭카메라를 이용한 실험연구)

  • Shin, Hyun-Jung;Smith, S. Jarrell;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2013
  • To examine floc characteristics of cohesive bed sediment of the Yeongsan River estuary, a floc camera system has been developed and utilized to observe flocs under varying conditions. In order to validate the floc camera system, sand particles were passed through 88-125 and $63-88{\mu}m$ sieves and observed within the laboratory. Mean grain size and settling velocities were found to be 102 and $56.2{\mu}m$ and 6.7 and 5.9 mm/s, respectively. Artifacts of particles estimated outside of the sieve range are attributed to being imaged out of the depth of focus. However, as mean grain size and settling velocity of each size class were within the confidence interval, the floc camera system was confidently used to examine cohesive bed sediments of Yeongsan River estuary. The bed sediment sample was prepared with a concentration of 0.1 g/L in 0 psu deionized water. The mean grain size, settling velocity and fractal dimension of flocs were $40.6{\pm}0.66{\mu}m$, 14 mm/s, and 2.86, respectively. Experiments were also conducted using different salinities (10 and 34 psu) and sediment concentrations (0.1 and 0.3 g/L). Despite changing these parameters, the mean observed grain size and settling velocities were found to be the same within the error range of the system. The relatively higher values of settling velocity and fractal dimension are considered a result of the sediment containing relatively small concentrations of organic matter. Moreover, consistent floc size over various grain sizes and concentrations may be the result of insufficient turbulence to aggregate flocs.

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

Estimating Groundwater Level Variation due to the Construction of a Large Borrow Site using MODFLOW Numerical Modeling (대규모 토취장 개발 예정 지역의 수치모델을 이용한 지하수위 변동 예측)

  • Ryu, Sanghun;Park, Joonhyeong;Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.15-23
    • /
    • 2012
  • A numerical model and field monitoring data are used to estimate a change in groundwater level at a borrow site, which will be constructed at the mountainous area with a large ground excavation in the study area, Hwaseong city. Lithologic data and hydraulic coefficients are collected at 9 boreholes and also groundwater levels are measured at these boreholes and existing wells in the study area. Additionally, groundwater recharge rate for the type of land cover is estimated using water budget analysis; 133.34mm/year for a mountainous area, 157.68mm/year for a farming area, 71.08mm/year for an urbanized area, and 26.06mm/year for a bedrock exposure area. The change in groundwater level in and around a borrow site is simulated with Modflow using these data. The result of a transient model indicates that a removal of high ground (over 40El.m) by an excavation will produce a decrease in groundwater levels, up to 1 m, around a borrow site in 10 years. It also explains that this ground excavation will bring about the decreases of 9.4% and 7.0% for groundwater recharge and surface runoff, respectively, which are the factors causing groundwater level's change. This study shows that it is required to construct the groundwater monitoring wells to observe the change of groundwater near a borrow site.

Removal of Organic Matter and Nitrogen in a Model System of Riverbed Filtration (하상여과 모형에서 유기물과 질소의 제거)

  • Ahn, Kyu-Hong;Sohn, Dong-Bin;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.525-534
    • /
    • 2005
  • A column experiment was performed to investigate the influence of the sludge cake development on the riverbed and the hydraulic gradient imposed by the drawdown at the well on the filtrate quality in order to offer a guideline in the design and operation of the riverbed filtration. Results show that the sludge cake on the riverbed plays an important role in the removal of the organic matter. Under the conditions of this study the COD removal rate increased from 17% to 50% along with the sludge cake development, which was equivalent to the BCOD removal of 22% and 67%, respectively. The active removal of the organic matter took place in the sludge cake and the upper 40 cm of the riverbed. As the flow rate increased owing to the increase in the head difference imposed on the column, the slope of the COD profile near the column inlet decreased, however, the profiles converged in about 40 cm from the inlet. In 10 days of sludge cake formation the dissolved oxygen was depleted at the depth of 70 cm, which suggests the denitrification can take place beyond the depth. This depth was further reduced to $20{\sim}40\; cm$ as the sludge cake developed. From this study the removal of organic matter can be expected through the riverbed filtration even with the depth of as shallow as 3 m, which is frequently met in Korea, while the removal of nitrogen through denitrification is not expected to be active under the condition.

Investigation of Membrane Fouling in Microfiltration by Characterization of Flocculent Aggregates (응집플록의 특성분석을 통하여 관찰된 정밀여과 막오염 현상에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.337-344
    • /
    • 2006
  • Characteristics of flocculent aggregates have great effects on membrane fouling. Floc from kaolin particles gave higher permeate throughputs than floc from natural particles at the same conditions. Therefore, the objectives of this study are to thoroughly analyze characteristics of flocculated aggregates and to investigate effects of flocculated aggregates on membrane fouling. Image analysis, specific rake resistance and cake compressibility were used for characterization of flocs. Different flocculent aggregates formed with natural and kaolin particles were employed in this study. The fractal dimensions from the image analysis were $D_2=1.79{\pm}0.07$ for floc from natural particles and $D_2=1.84{\pm}0.06$ for floc from kaolin particles. The lower fractal dimension($D_2$) of floc from natural particles indicated that the aggregates were more porous and less compact than floe from kaolin particles. In addition, both the specific cake resistances and compressible degrees of flocs from natural particles showed greater values than those of flocs from kaolin particles. The results implied that the porous and loose flocs from natural particles were more easily compressed on membrane surface than the dense and compact flocs from kaolin particles. The compressed flocs yielded the great hydraulic resistances by hindering the water flow through the cake layer.

An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects (입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구)

  • SOHN Byung-Kyu;KIM Hong-Jin;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.713-719
    • /
    • 2001
  • The aim of this study is to check the application criteria of the conventional techniques and clarify the effects of breaker depth, seabed conditions on the stability in relation to the effects of uncertainty of storm duration and directional irregular waves. The typical damage modes were divided by the direct wave force on the armor unit and by the local scouring around the toe of a breakwater head by the model experiments. The destruction modes are defined, and some criteria on the damage modes and scouring/deposition at the toe of a breakwater head in relating the wave-bottom-structural conditions can be checked using the multi-directonal irregular wave generator system. According to the results, it is emphasized that the 3-D effects on the stability should be analyzed in the design of multi-purpose/function coastal structures in consideration of the evaluation of spatial variation of damage modes and hydraulic characteristics as well as the wave distribution along the structures.

  • PDF

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.