• Title/Summary/Keyword: Water Granulated Slag

Search Result 182, Processing Time 0.023 seconds

Strength loss contributions during stages of heating, retention and cooling regimes for concretes

  • Yaragal, Subhash C.;Warrier, Jishnu;Podila, Ramesh
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • Concrete suffers strength loss when subjected to elevated temperatures during an accidental event such as fire. The loss in strength of concrete is mainly attributed to decomposition of C-S-H gel and release of chemically bound water, which begins when the temperature exceeds $500^{\circ}C$. But it is unclear about how much strength loss occurs in different stages of heating, retention and cooling regimes. This work is carried out to separate the total strength loss into losses during different stages of heating, retention and cooling. Tests were carried out on both Ordinary Portland Cement (OPC) based concrete and Ground Granulated Blast Furnace Slag (GGBFS) blended concrete for $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ with a retention period of 1 hour for each of these temperature levels. Furnace cooling was adopted throughout the experiment. This study reports strength loss contribution during heating, retention and cooling regimes for both OPC based and GGBFS based concretes.

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF

Influence of Iranian low-reactivity GGBFS on the properties of mortars and concretes by Taguchi method

  • Ramezanianpour, A.A.;Kazemian, A.;Radaei, E.;AzariJafari, H.;Moghaddam, M.A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.423-436
    • /
    • 2014
  • Ground Granulated Blast Furnace Slag (GGBFS) is widely used as an effective partial cement replacement material. GGBFS inclusion has already been proven to improve several performance characteristics of concrete. GGBFS provides enhanced durability, including high resistance to chloride penetration and protection against alkali silica reaction. In this paper results of an experimental research work on influence of low-reactivity GGBFS (which is largely available in Iran) on the properties of mortars and concretes are reported. In the first stage, influence of GGBFS replacement level and fineness on the compressive strength of mortars was investigated using Taguchi method. The analysis of mean (ANOM) statistical approach was also adopted to develop the optimal conditions. Next, based on the obtained results, concrete mixtures were designed and water penetration, capillary absorption, surface resistivity, and compressive strength tests were carried out on highstrength concrete specimens at different ages up to 90 days. The results indicated that 7-day compressive strength is adversely affected by GGBFS inclusion, while the negative effect is less evident at later ages. Also, it was inferred that use of low-reactivity GGBFS (at moderate levels such as 20% and 30%) can enhance the impermeability of high-strength concrete since 28 days age.

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

Waste Glass as an Activator in Class-C fly Ash/GGBS based Alkali Activated Material

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.77-78
    • /
    • 2020
  • An alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS) based alkali-activated material (AAM). The compressive strength and porosity were measured, and (SEM-EDX) were used to study the hydration mechanism and microstructure. Results indicated that the composition of alkali solutions was significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength. Further increase in WGP dissolution led to strength loss, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite also appeared to improve the strength which contributed to develop C-S-H-type hydration.

  • PDF

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.

Evaluation on Mechanical Performance and Chloride Ion Penetration Resistance of On-Site Shotcrete Made with Slurry-Type Accelerator (슬러리형 급결제를 활용한 현장적용 숏크리트의 역학적 성능 및 염해저항성 평가)

  • Kim, Hyun-Wook;Yoo, Yong-Sun;Han, Jin-Kyu;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The purpose of this research is to develop a slurry-type accelerator that contains various beneficial properties such as reduction of dust generation, lower alkalinity, early age strength development, etc., and uses such slurry type accelerator to produce high performance shotcrete that present excellent resistant against chloride ion penetration. In this work, shotcrete mixtures of 0.44 and 0.338 water-to-binder ratio (w/b) were produced at construction site using slurry-type accelerator. The mechanical properties and chloride ion penetration resistance of such shotcrete (including base concrete) were evaluated. According to the experimental results, the slurry-type accelerator was successfully used to produce both w/b 0.44 and 0.338 shotcretes. The 1 day and 28 day compressive strength of shotcrete were found to be closer to or higher than 10MPa and 40MPa, respectively. The w/b 0.338 shotcrete that used 40% replacement of blast furnace slag showed lower compressive strength than w/b 0.44 shotcrete without any mineral admixture at 1 day. However, the compressive strength with 40% blast furnace slag increased significantly at 28 day. Moreover, there was more than 50% increase in chloride ion penetration resistance with blast furnace slag, showing its strong potential for higher performance shotcrete application.

Properties of Non-Sintered Cement Pastes Immersed in Sea Waters at Different Temperatures for Binders Mixed with Different Ratios (침지된 해수 온도 및 결합재 혼합비에 따른 비소성 시멘트의 강도 특성)

  • Jun, Yubin;Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.75-84
    • /
    • 2016
  • This paper presents an investigation of the mechanical properties on non-sintered cement pastes immersed in sea waters at three different temperatures. The non-sintered cement pastes were synthesized using blended binder(Class F fly ash; FA and ground granulated blast furnace slag; GGBFS) and alkali activator(sodium hydroxide and sodium silicate). Binders were prepared by mixing the FA and GGBFS in different blend weight ratios of 6:4, 7:3 and 8:2. The alkali activators were used 5wt% of blended binder, respectively. Calcium carbonate was used as an chemical additive. The compressive strength, bulk density and absorption of alkali-activated FA-GGBFS blends pastes were measured at 3 and 28 days after immersed in sea waters at three different temperatures($5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$). The XRD and SEM tests of the pastes were conducted at 28 days. Water-soluble chloride(free chloride) and acid-soluble chloride(total chloride) contents in the pastes were also measured after 28 days immersion in sea water. The experimental results showed that increasing the content of FA in alkali-activated FA-GGBFS blends pastes immersed in sea water increases the absorption, water-soluble chloride content and acid-soluble chloride content, and reduces the compressive strength and bulk density. And it was found that there was a variation of strength change for the alkali-activated FA-GGBFS blends pastes immersed in sea waters at three different temperatures that depends on the blending ratio of FA and GGBFS.