• Title/Summary/Keyword: Water Flows

Search Result 1,355, Processing Time 0.028 seconds

Characteristics of the Interfacial Friction Factor in Countercurrent Two-Phase Flows (반류 2상유동에서의 계면마찰계수의 특성)

  • 이상천;김동수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.299-307
    • /
    • 1991
  • A unified correlation of the interfacial friction factor for air-water and steam-water flows in inclined rectangular channels has been developed. The correlation was expressed in the form of a power law of the liquid and the gas Reynolds number, and the liquid-to-gas viscosity ratio. In addition, a relation between the equivalent roughness and the intensity of wave height fluctuation of the interface has been investigated. A new dimensionless intensity of fluctuation including a liquid film Reynolds number is proposed. It has been shown that the dimensionless equivalent roughness, which is calculated from the Nikuradse equation, can be uniquely related to this dimensionless intensity of fluctuation for both air-water and steam-water flows.

Temporal and Spatial Analysis of Hydrology and Water Quality in Small Rural Streams for Stream Depletion Investigation (건천화된 농촌소하천의 시·공간적 수문 수질 특성분석)

  • Lee, Ye Eun;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.177-186
    • /
    • 2013
  • The purpose of this study was to analyze the temporal and spatial characteristics of the stream flow of small rural streams for investigating the status of stream depletion located downstream of irrigation reservoir. Bonghyun and Hai reservoirs and each downstream were selected for this study. Streamflow was measured for 8 stations downstream from two reservoirs from 2010 to 2012. The water quality samples were collected monthly from the 8 stream stations and 2 reservoir stations from 2011 to 2012. The stream depletion was found in most of the downstream of reservoirs for the non-irrigation period and even in the irrigation period when there were a lot of antecedent precipitation. We found that the stream segments where there were few streamflow, vegetation covers the stream and block the streamflow which makes the stream lost its original function as a stream. Water quality monitoring results of Bonghyun stream indicated that the concentration of SS, Turbidity, TOC, COD were decreased as the stream flows from the reservoir to downstream while the TN and TP were increased. The correlation analysis for water quality data indicated that the correlation between T-N and T-P was high for Bonghyeon and Sukji streams, respectively. Continuous monitoring for rural streams located in downstream of reservoirs are required to quantify the status of stream flow depletion and determine the amount of environmental flows.

Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger (평판관 열교환기 내 공기-물 2상류 분지)

  • Kim, Nae-Hyun;Park, Tae-Gyun;Han, Sung-Pil;Shin, Tae-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.687-697
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous 30 channel results. The flow at the header inlet is annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted geometry, significant portion of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, different from the downward configuration, significant portion of the water flows through the rear part of the header. The effect of the protrusion depth is the same as that of the downward flow. As the protrusion depth increases, more water is forced to the rear part of the header. However, the effect of mass flux or quality is opposite to the downward flow case. As the mass flux or quality increases, more water flows through the frontal part of the header. Compared with the previous thirty channel configuration, the present ten channel configuration yields better flow distribution. Possible explanation is provided from the flow visualization results.

A Study on the spatial Layout of Modern Settlements in Hwangjon Korea (한국 근대 주거 및 취락의 공간적 질서체계에 관한 연구)

  • 이현희
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.197-202
    • /
    • 1997
  • In this study, we surveyed historical housing settlements of Hwangjon in Bonghwa-a clan village in Youngnam district which was formed in the Chosun Dynasty. We observe the relationships among the spatial layout of clan villages, the water flows and the family hierarchies as follows; (1) when a clan village was initially formed, the water flow, which is the phylosophical foundation of Poong Soo, was the most important factor for determining the original location; (2) as villages prosper, the water flow and the family hierarchy still played an important role in determining the following geological locations; (3) in modern age, however, the water flow and the family hierarchy lost the role in detrmining the geological locations; (4) consequently, in present days, each household becomes isolated from the village. Reflecting on these observations, for village to be maintained, we conclude that we need novel practical and cohesive village forming drives that can replace the water flows and the family hierarchy in the past.

  • PDF

Estimation of water quality distribution in freshing reservoir by satellite images

  • Torii, Kiyoshi;You, Jenn-Ming;Chiba, Satoshi;Cheng, Ke-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1227-1229
    • /
    • 2003
  • Kojima Lake in Okayama prefecture is a freshing reservoir constructed adjacent to the oldest reclaimed land in Japan. This lake has a serious water quality problem because two urban rivers are flowing into it. In the present study, unsupervised classification was performed at intervals of several years using Landsat MSS data in the past 15 years. After geometric correction of these data, MSS data corresponding geographically to the field observation data were extracted and subjected to the multivariate analysis. Water quality distribution in the lake was estimated using the regression equation obtained as a result. In addition, two - dimensional and three-dimensional numerical simulations were performed and compared with the distribution obtained from the satellite images. Behavior of the reservoir flows is complicated and water quality distribution varies greatly with the flows. Here, I report the results of analysis on three factors, field observation, numerical simulation and satellite images.

  • PDF

COMPUTATION OF FREE-SURFACE FLOWS DUE TO PRESSURE DISTRIBUTION

  • Jack Asavanant;Montri Maleewong;Choi, Jeong-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.137-152
    • /
    • 2001
  • Steady two-dimensional flows due to an applied pressure distribution in water of finite depth are considered. Gravity is included in the dynamic boundary condition. Gravity is included in the dynamic boundary condition. The problem is solved numerically by using the boundary integral equation technique. It is shown that, for both supercritical and subcritical flows, solutions depend on three parameters: (i) the Froude number, (ii) the magnitude of applied pressure distribution, and (iii) the span length of pressure distribution. For supercritical flows, there exist up to two solutions corresponding to the same value of Froude number for positive pressures and a unique solution for negative pressures. For subcritical flows, there are solutions with waves behind the applied pressure distribution. As the Froude number decreases, these waves when the Froude numbers approach the critical values.

  • PDF

REYNOLDS STRESS MODELING OF OPEN-CHANNEL FLOWS OVER BEDFORMS

  • Choi, Sung-Uk;Kang, Hyeong-sik
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.247-258
    • /
    • 2002
  • This paper presents a non-isotropic turbulence modeling of flows over bedforms. The Reynolds stress model is used for the turbulence closure. In the model, Launder, Reece, and Rodi's model and Hanjalic and Launder's model are employed f3r the pressure strain correlation term and the diffusion term, respectively. The mean flow and turbulence structures are simulated and compared with profiles measured in the experiments. The numerical solutions from two-equation turbulence models are also provided for comparisons. The Reynolds stress model yields the separation length of eddy similar to the other numerical results. Using the developed model, the resistance coefficients are also estimated for the flows at different Froude numbers. Karim's (1999) relationship is used to determine the bedform geometry. It is found that the values of the form drag and the skin friction are very similar to those obtained by the other turbulence models. meaning higher values of the form drag and lower values of the skin friction compared with the empirical formulas.

  • PDF

Computation of Water and Air Flow with Submerged Hydrofoil by Interface Capturing Method

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.789-795
    • /
    • 2000
  • Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are simulated numerically, considering two-fluid flows of both water and air. The computation is performed by a finite volume method using unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell wise local mesh refinement. The integration in space is of second order, based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels. The linear equations are solved by conjugate gradient type solvers, and the non-linearity of equations is accounted for through Picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations, the continuity equation, the conservation equation of one species, and the equations for two turbulence quantities. Finally, a comparison is quantitatively made at the same speed between the computation and experiment in which the grid sensitivity is numerically checked.

  • PDF

Stochastic Forecasting of Monthly River Flwos by Multiplicative ARIMA Model (Multiplicative ARIMA 모형에 의한 월유량의 추계학적 모의 예측)

  • 박무종;윤용남
    • Water for future
    • /
    • v.22 no.3
    • /
    • pp.331-339
    • /
    • 1989
  • The monthly flows with periodicity and trend were forecasted by multiplicative ARIMA model and then the applicability of the model was tested based on 23 years of the historical monthly flow data at Jindong river stage gauging station in the Nakdong River Basin. The parameter estimation was made with 21 years of data and the remaining two years of monthly data were used to compare the forecasted flows by ARIMA (2,0,0)$\times$$(0,1,1)_{12}$ with the observed. The results of forecast showed a good agreement with the observed, implying the applicability of multiplicative ARIMA model for forecasting monthly river flows at the Jindong site.

  • PDF