• Title/Summary/Keyword: Water Flow Rate

Search Result 3,019, Processing Time 0.052 seconds

A Study on the Performance Characteristics of an Absorption Chiller for Variable Cooling Water Flow Rate at Partial Load Conditions (흡수식 냉온수기의 부분부하에 따른 냉각수 변유량시 성능특성에 관한 연구)

  • 박찬우;조현철;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • In general, an absorption chiller or heat pump is operated under the constant cooling water flow rate condition even though the system works with a partial load. The objective of this paper is to study the effect of the cooling water flow rates and the temperature of cooling water on the system performance to find the energy saving methode for the partial load operation of the double effect $H_2O$/LiBr absorption chiller. It is found that the performance of the system is sensitive to the temperature of cooling water than the cooling water flow rate, so the decrease of the performance due to reducing the cooling water flow rate can be overcome with the reduction of the cooling water temperature by 1$^{\circ}C$. The flow rate of the cooling water flow rate ranges from 50% to 100% of the flow rate at normal conditions with a partial load. It is also found that the operation cost of the cooling water pump and the cooling tower can be reduced by 23%.

An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Snag-Uk;Jung, Won-Seok;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

The evaluation of the simultaneous flow rate for sizing the water supply piping in the office building (사무소 건물의 급수배관경 산정을 위한 동시사용유량에 관한 연구)

  • 이용화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.511-517
    • /
    • 1999
  • Determining the simultaneous flow rate in any particular section of piping is the important step in order to determine the size of water supply piping. Now we are using the diversity curve of common water closet in order to determine the simultaneous flow rate of water supply piping, but there is a difference between a determined flow rate of general water closet and that of water closet for water saving. This study aims to find out the fixture unit of a flush valve type water closet for water saving in office building, and to determine the correlation between the fixture units and peak flow rates on the basis of the probability theory. A flush valve type water closet for water saving that have a 7.5 second duration of flush operation with an average design flow rate 72 $\ell$/fin was considered. Simulation results indicate that the number 5 is shown to be reasonable to the fixture unit of water closet for water saving. And the design can be undersized considerably with the revised diversity curves using modified fixture unit.

  • PDF

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

A Study on the Performance of an Absorption Heat Transformer with Process Simulation (프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구)

  • Cho Seung Yon;Kim Young in
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.3
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

Estimating the Return Flow of Irrigation Water for Paddies Using Hydrology-Hydraulic Modeling (수리·수문해석 모델을 활용한 농업용수 회귀수량 추정)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Yoon, Dong-Hyun;Yang, Mi-Hye;Jung, In-Kyun;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.1-13
    • /
    • 2023
  • Irrigation return flow plays an important role in river flow forecasting, basin water supply planning, and determining irrigation water use. Therefore, accurate calculation of irrigation return flow rate is essential for the rational use and management of water resources. In this study, EPA-SWMM (Environmental Protection Agency-Storm Water Management Model) modeling was used to analyze the irrigation return flow and return flow rate of each intake work using irrigation canal network. As a result of the EPA-SWMM, we tried to estimate the quick return flow and delayed return flow using the water supply, paddy field, drainage, infiltration, precipitation, and evapotranspiration. We selected 9 districts, including pumping stations and weirs, to reflect various characteristics of irrigation water, focusing on the four major rivers (Hangang, Geumgang, Nakdonggang, Yeongsangang, and Seomjingang). We analyzed the irrigation period from May 1, 2021 to September 10, 2021. As a result of estimating the irrigation return flow rate, it varied from approximately 44 to 56%. In the case of the Gokseong Guseong area with the highest return flow rate, it was estimated that the quick return flow was 4,677 103 m3 and the delayed return flow was 1,473 103 m3 , with a quick return flow rate of 42.6% and a delayed return flow rate of 13.4%.

THE ANALYTIC ANALYSIS OF THE CORE INJECTION COOLING FLOW RATE FOR EMERGENCY WATER SUPPLY SYSTEM IN HANARO (하나로 비상 보충수 공급계통의 노심 주입 냉각유량 해석)

  • Park Yong-Chul;Kim Bong-Soo;Kim Kyung-Ryun;Wu Jong-Sub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.39-44
    • /
    • 2005
  • In HANARO, a multi-purpose research reactor of 30 MWth, the emergency water supply system consists essentially of an emergency water storage tank located in the level of about thirteen meter (13 m) above the reactor core, a three inch ('3\%') diameter water injection pipe line including injection valves from the tank to the reactor cooling inlet pipe and a test loop to do periodic system performance test. When the water level of the reactor pool comes down to the extremely low due to a loss of reactor pool water accident the emergency water stored in the tank should be fed to the core by the gravity force and at that time the design flow rate is eleven point four kilogram per second (11.4 kg/s). But it is impossible periodically to measure the injection flow rate under the emergency condition because the normal water level should be maintained during the reactor operation. This paper describes a flow network analysis to simulate the flow rate under the emergency condition. As results, it was confirmed through the analysis results that the calculated flow rate agrees with the design requirement under the emergency condition.

  • PDF

An experimental study on cooling characteristics of mist impinging jet on a flat plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Sang-Uk;Chung, Won-Seok;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF