• Title/Summary/Keyword: Water Droplet

Search Result 534, Processing Time 0.036 seconds

Experimental Study of Evaporation of Nanofluid Droplet (나노유체 액적의 증발에 관한 실험적 연구)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.647-653
    • /
    • 2013
  • The evaporation characteristics of nanofluid droplets on a heated solid surface were experimentally investigated. The experiments were conducted using pure water and a nanofluid of water mixed with CuO nanoparticles, and the solid surface was made of a copper block heated by a nine cartridge heater. The experimental results showed that the evaporation rate of the nanofluid droplet was higher than that of the pure water droplet on the heated solid surface because nanoparticles increased the thermal conductivity of the nanofluid. Furthermore, it was found that the evaporation rate of the nanofluid droplet increased with the solid surface roughness. This may be because the actual area of the liquid-solid interface increased with the solid surface roughness.

Ostwald Ripening in Hydrogenated Lecithin-stabilized Oil-in-Water Nano-emulsions (수첨 레시틴으로 안정화된 오일/물 나노에멀젼에서의 Ostwald Ripening)

  • Cho, Wan-Goo;Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Formation of oil-in-water nano-emulsions has been studied in oil/hydrogenated lecithin/water systems by two shear different instrument. The influence of surfactant concentration on nano-emulsion droplet size and stability has been studied. Droplet size was determined by dynamic light scattering, and nano-emulsion stability was evaluated by measuring the variation of droplet size as a function of time. The results obtained showed that the breakdown process of nano-emulsions studied could be attributed to Ostwald ripening. An increase of nano-emulsion instability with increase in surfactant concentration was found in the droplet size in the range of 100~200nm, however, an decrease of instability was found in the droplet size in the range of 300~400nm.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Influence of Xanthan, Emulsification Temperature, and Environmental Stresses on the Preparation of Water-in-Corn Oil Emulsions Droplets Coated by Polyglycerol Polyricinoleate

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.299-306
    • /
    • 2009
  • The purpose of this study was to prepare stable water-in-corn oil (W/O) emulsion droplets coated by polyglycerol polyricinoleate (PGPR). W/O emulsions (20 wt% aqueous phase, 80 wt% oil phase containing 8 wt% PGPR) were produced by high pressure homogenization (Emulsions 1), however, appreciable amount of relatively large water droplets (d>$10{\mu}m$) were found. To facilitate droplet disruption, viscosity of each phase was adjusted: (i) increased the viscosity of aqueous phase by adding 0.1 wt% xanthan (Emulsions 2); (ii) decreased the viscosity of oil phase and aqueous phase by heating them separately at $50^{\circ}C$ for 1 hr immediately before emulsification (Emulsions 3). Homogenizing at the elevated temperature clearly led to a smaller water droplet size, whereas xanthan neither improved nor adversely affected on the microstructures of the emulsions. In addition, the Emulsions 3 had good stability to droplet aggregation under shearing stress, thermal processing, and long term storage.

Performance of Mini-Sprinkler - (2) Size of Droplets (미니 스프링클러의 살수 기능 - (2) 살수 입자의 크기)

  • 서상룡;성제훈
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.183-189
    • /
    • 1997
  • This study was performed to Investigate size of droplet sprinkled from mini-sprinkler. Twelve different kinds of the sprinkler having various structures and sizes of nozzle orifices were selected and tested. Diameters of the droplet reached at several distances from a sprinkler were measured by a machine vision system and the volume median diameters (VMM) were determined statistically. The size of droplet was not affected much by the size of nozzle orifice of a sprinkler but was rather more affected by structure of the sprinkler, especially by the shape of spreader of the sprinkler. Experiment of varying pressure of sprinkling water validated that the size of droplet was inversely proportional to water pressure powered by 1/3. Hence the size of droplet at any water pressure could be easily estimated from experimental data. The size of droplet increased as travel distance of the droplet increases in a relationship of and order function. The size of droplet of the tested sprinkler were in the ranges of 100-300fm within 1m of droplet travel distance, 230~470${\mu}{\textrm}{m}$ within 1~2m of droplet travel distance and 300~770${\mu}{\textrm}{m}$ within 2~3m of droplet travel distance.

  • PDF

Stability of the Oil-in-water Type Triacylglycerol Emulsions

  • Hesson Chung;Kim, Tase-Woo;Kwon, Ich-Chan;Jeong, Seo-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.284-288
    • /
    • 2001
  • Lipid emulsions with saturated triacylglycerols (TAGs) with 4 to 10 carbons in each acyl chain were prepared to study how the oil component alters the stability of the lipid emul-sions when phosphatidylcholines were used as emulsifiers. The average droplet size of the emul-sions became smaller as the chain length of the TAG increased. For a given oil emulsion with smaller droplets was formed with an emulsifier having higher HLB value. The influence of HLB values on the droplet size was biggest for the tributyrin (C4) emulsion. For the tricaprylin(C8) emulsions, droplet size was identical at given emulsifier concentrations regardless of HLB values. The HLB value and the concentration of the emulsifiers also affect the droplet size of the emul-sions. The emulsions with smaller average droplet size were more stable than with bigger size for 20 days. The oil and water (o/w) interfacial tension in inversely proportional to the initial droplet size of the emulsion.

  • PDF

Experimental Study on the Droplet Formation in a Microchannel with a Cross Junction (십자형 마이크로 채널 내에서의 액적 형성에 관한 실험적 연구)

  • Park, Jae-Hyoun;Bae, Ki-Hwa;Heo, Young-Gun;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.39-47
    • /
    • 2007
  • This paper describes an experimental study on the droplet formation and the subsequent motion in a microchannel having a cross junction. While one kind of liquid (pure water or water-surfactant mixture) is drawn into a horizontal inlet channel, the other kind (oil) is introduced through two vertical inlet channels. Due to the effect of surface tension on the interface between the two fluids, the droplets of the first fluid are formed near the cross junction. In this study, we have found that the droplet formation is affected even by slight difference in the surface tension. When the surface tension between two fluids is decreased, the droplet size is decreased in order to keep the equilibration between the pressure and the surface tension. In addition, the time interval between each of the droplet formations is decreased and the distance between droplets is also decreased when the surface tension is decreased.

A Experimental Study on Coverage Characteristic of a Self-Propelled Boom Sprayer for Paddy Field (수도작용 붐 방제기의 피복특성에 관한 실험적 연구)

  • 정창주;이강걸;이중용;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.137-150
    • /
    • 1997
  • To investigate the feasibility of a boom sprayer in the paddy field, an experimental boom sprayer for both broadcast and directed spraying to the lower part of rice plants was developed. The droplet deposition characteristics of the boom sprayers were experimentally compared to those of power sprayer. Water sensitive papers(WSP) and a machine vision system were used to evaluate the coverage rate and droplet density. It was shown that the broadcast application by the boom sprayer was the best coverage among the tested sprayers. Coverage tate and droplet density were affected by the distance between nozzles and the sprayer ground speed, The best result was obtained when the distance of 30cm and the speed of 1.7km/hr. The directed application showed inconsistency in overall droplet distribution. The inconsistency was judged to be caused by conflict between plants and boom extenders. The power sprayer showed a very wide range of droplet size distribution, relatively larger droplets and inconsistency in cove The power sprayer was judged to be inadequate for the low-volume precision application because of inconsistency in performance and difficulty in adjusting the spraying rate. Based on the droplet coverage characteristics, it was concluded that the self-propelled boom sprayer for the broadcast application was feasible for an alternative to the power sprayer in case of low volume, precision application in paddy condition.

  • PDF

Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops (거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성)

  • Kim, Uijin;Kim, Jeong-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.

Droplet Evaporation on Surf aces of Various Wettabilities (다양한 습윤성 표면 위에서의 액적 증발)

  • Song, Hyun-Soo;Lee, Yong-Ky;Jin, Song-Wan;Kim, Ho-Young;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF