• Title/Summary/Keyword: Water Cycle

Search Result 2,159, Processing Time 0.032 seconds

Variations of Engineering Geological Characteristics of the Cretaceous Shale from the Pungam Sedimentary Basin in Kangwon-do due to Freezing-Thawing (강원도 횡성군 풍암분지 백악기 셰일의 동결-융해에 따른 지질공학적 특성 변화)

  • Jang Hyun-Shic;Jang Bo-An;Lee Jun-Sung
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.401-416
    • /
    • 2004
  • We have collected shale specimens from the Pungam Basin in Kangwon province and investigated change of physical properties by freezing and thawing in water as well as in acidic fluid. The temperature range was $-20{\pm}2^{\circ}C\~15{\pm}2^{\circ}C$. Specimens were frozen for 12 hours and thawed in water for 8 hours. Then, they were saturated in the vacuum chamber for 4 hours to make specimens fully saturated. This procedure was 1 cycle. We have measured absorption, ultrasonic velocity, shore hardness, slake durability and uniaxial compressive strength at every 5th cycles. The physical properties increased or decreased as freezing and thawing cycles increased. Uniaxial compressive strength decreased by 0.40MPa per cycle in water and by 0.48MPa in acidic fluid. Elastic constant also decreased by 0.21GPa per cycle in water and by 0.30GPa in acidic fluid. Absorption increased by $0.29\%$ and $0.37\%$ per cycle in water and acidic fluid, respectively. These results indicate that decrease in uniaxial compressive strength, elastic constant and absorption by freezing and thawing in acidic fluid is more rapid than in water. Ultrasonic velocities, shore hardness and slake durability show no differences in water and acidic fluid. When we compared our results with the temperatures in the Hongchon during the winter season, $6\~12$ cycles may be equivalent to 1 year.

Analysis of Secondary School Students' System Thinking on the Cycle of Matter in Earth System: Considering the Impact of Human Activity on the Cycle (지구 시스템 내 물질 순환에 대한 중·고등학교 학생들의 시스템 사고 분석: 인간의 활동이 순환에 미치는 영향을 고려하여)

  • Oh, Hyunseok;Lee, Kiyoung;Kim, Kwonjung
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.275-291
    • /
    • 2021
  • The purpose of this study is to analyze the level and characteristics of system thinking of middle and high school students on cycle of matter in the Earth system considering the impact of human activities on the cycle. For this purpose, we developed items for assessment and assessment rubric through the analysis of 2015 revised curriculum and applying systems thinking, respectively. Middle and high school students who participated in the Korea Earth Science Olympiad were the subjects of this study. The level of system thinking was determined using the assessment rubric for student responses collected using items for assessment. The characteristics of system thinking were identified using word analysis. Based on these, the improvement of the curriculum considering the impact of human activities was discussed. The results of the study are as follows: first, the system thinking level of most secondary school students was low in identifying or classifying system elements for matter cycle, and high levels, such as system relationship or generalization of patterns, were found to be relatively small. It was found that students had a higher level of system thinking in the carbon cycle than in the water cycle. Second, in terms of the characteristics of system thinking about water cycle, water was recognized as a major system element and mainly related with evaporation between atmosphere and other system elements. Whereas, in the carbon cycle, carbon dioxide was regarded as a major system element, and photosynthesis and respiration were represented in relation with the biosphere. Third, for education considering the impact of human activities on the matter cycle in the Earth system, it is proposed improving the curriculum considering the socio-ecological system by extending the existing earth system.

Cleaning and Storage Effect of Electrolyzed Water Manufactured by Various Electrolytic Diaphragm (격막 방식에 따라 제조한 전해수의 세척 및 보관 효과)

  • 김명호;정진웅;조영제
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • This study was carried out to investigate the efficacy of electrolyzed water manufactured with or without diaphragm on sterilization and preservation of cut-celery and shelled raw oyster. In cut-celery, total viable cell count and coliform group in the treatment of electrolyzed water were decreased to about 1/200∼1/1,000 level and about 1/100 level comparing non-treated ones. But moisture content, pH, hardness, vitamin C and residual chlorine content were showed a little difference among treatments up to 10 days at 10$^{\circ}C$. L and a color values were gradually increased in all treatments, and color differences($\Delta$E) were remarkable between treatment and untreatment sample. In overall acceptability, cut-celery treated with electrolyzed water showed somewhat higher score than that of other ones treated with tap water and 100 ppm NaClO solution until 5 days of storage. After 48 hours of storage, it was showed that VBN, total viable cell count and coliform count of shelled raw oyster treated with electrolyzed alkali water produced by non-diaphragm system are lower by about 3 mg%, 1∼2 log cycle and 2 log cycle respectively than that of ones treated with sea water. Total viable cell count of shelled raw oyster just after treatment was lower by about 1 log cycle than that of ones treated with sea water, and any significant increment was not found after 24∼48 hours of storage.

Bibliometric analysis of twenty-year research trend in desalination technologies during 2000-2020 (계량서지적 분석을 활용한 핵심 담수화 기술의 연구 동향)

  • Lee, Gyeonghun;Kim, Hye-Won;Boo, Chanhee;Beak, Youngbin;Kwak, Rhokyun;Kim, Choonsoo;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2021
  • The global water shortage is getting more attention by global climate change. And water demand rapidly increases due to industrialization and population growth. Desalination technology is being expected as an alternative water supply method. Desalination technology requires low energy or maintenance costs, making it a competible next generation technology, with examples such as forward osmosis (FO), membrane distillation (MD), capacitive deionization (CDI), and electrodialysis (ED) to compete with reverse osmosis (RO). In order to identify recent research trends in desalination technologies (FO, MD, RO, CDI, and ED) between 2000-2020, a bibliometric analysis was conducted in the current study. The number of published papers in desalination technology have increased in Desalination and Journal of Membrane Science mainly. Moreover, it was found that FO, MD, RO, CDI, and ED technologies have been applied in various research areas including electrochemical, food processing and carbon-based material synthesis. Recent research topics according to the desalination technologies were also identified.

Seasonal Variation of Heterotrophic Activity in the Estuary of Naktong River over Half Tidal Cycle and Salinity Effect (낙동강 하구의 조석변화에 따른 Heterotrophic Activity의 계절적 변화와 염분의 영향)

  • 안태영;박중찬;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.339-343
    • /
    • 1991
  • Heterotrophic activity, total bacteria and salinity were determined seasonally in the estuary of Naktong River over half tidal cycle. Heterotrophic activity was determined by the uptake of [U- $^{14}$ C]glucose. Heterotrophic activity fluctuated with the tides and was decreased as salinity increased. Teh great activity occurred near low ebb tide at all seasons except summer. The main environmental factor affecting hetreotrophic activity was the salinity rather than water temperature in the estuary of Naktong River. In order to estimate the effect of salt, salt was added to estuarine water. Vmax for glucose of salt-added water was 17% and 77% of original estuarine water at station 1 and 2 respectively and slight increase was observed at station 3. Respiration rate and Kt+Sn for glucose of salt-added sample increased at all 3 stations. The increase of the Kt value implies the reduced affinity of bacterial population for glucose. The effects of salinity on the heterotrophic activity were more extensive in the upper region of estuary than at the mouth.

  • PDF

Green synthesis of aluminum-based metal organic framework for the removal of azo dye Acid Black 1 from aqueous media

  • Jung, Kyung-Won;Choi, Brian Hyun;Lee, Seon Yong;Ahn, Kyu-Hong;Lee, Young Jae
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.316-325
    • /
    • 2018
  • Aluminum based metal-organic framework using a di-carboxylate linker succinic acid (Al-SA MOF), are synthesized in water with minimal generation of secondary pollutants. The physicochemical properties of Al-SA MOF were examined, followed by its utility for the adsorption of Acid Black 1 (AB1) in aqueous media. Influences of key parameters such as pH, contact time, initial AB1 concentration,temperature, and selectivity on the adsorption process were assessed. A series of adsorption mechanisms are proposed, which involve electrostatic, hydrogen bonding, and hydrophobic interactions. These findings suggest that Al-SA MOF is a potent candidate in removing complex azo dyes molecules from aqueous media.

Life Cycle Assessment (LCA) on Intensive Sludge Treatment System (Life Cycle Assessment (LCA)를 적용한 오니집약처리(汚泥集約處理)의 평가(評價))

  • Hwang, Yong-Woo;Kwon, Bong-Kee;Seo, Seong-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.65-74
    • /
    • 1998
  • Life cycle assessment (LCA) on two different sludge treatment systems, on-site treatment and pipe-collected intensive treatment was performed to estimate the environmental impact in the aspect of global warming effect. As a main parameter of the estimation, $CO_2$ was chosen and quantified through the whole life cycle of the treatment systems including construction, operation and dismantlement. In this study, the changes of $CO_2$ production unit (CPU) by up-scaling n currently used sludge treatment processes were also calculated. As the result, a larger amount of $CO_2$ was exhausted from the construction step of intensive treatment system than that of on-site treatment system, because an additional pipe-collection system was needed in intensive treatment system. However, the total amount of $CO_2$ exhausted from whole life cycle including not only construction and dismantlement but also 15 year-operation and maintenance was reduced by appling intensive treatment.

  • PDF

Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide (이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

A Numerical Analysis of a Revised VX Absorption Cooling Cycle (Revised VX흡수식 냉동사이클의수치 해석)

  • 장원영;정은수;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.505-513
    • /
    • 2001
  • A revised VX cycle using ammonia/water as the working fluid is a cycle which is suitable to produce cooling utilizing low temperature hat sources. The cycle was analyzed numerically to investigate the effects of the design and operating conditions on the performance. It was shown that both COP and cooling capacity were significantly influenced by the performance of he rectifier. Insufficient UA of the rectifier reduced both ammonia mass fraction and mass flow rate of the vapor entering the condenser, which produced cooling effect in the evaporator. As the temperature and the mass flow rate of the heat source increased, both COP and exergetic efficiency decreased due to the irreversibilities produced in heat exchangers, but cooling capacity did not vary much. Cooling capacity increased significantly as the coolant temperature decreased, although COP and exergetic efficiency remained nearly constant.

  • PDF