• Title/Summary/Keyword: Water Culture

Search Result 2,461, Processing Time 0.037 seconds

A Study on Attribute of Water and Exhibition Composition - Focused on Four-major River Water Culture Pavilion in Korea - (물의 속성과 전시연출에 관한 연구 - 4대강 물문화관을 중심으로 -)

  • Song, Hyeon-Ji;Kim, Nam-Hyo
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.5
    • /
    • pp.355-362
    • /
    • 2012
  • Water Culture Pavilion was constructed as a part of dam construction and Four-major rivers restoration projects, which have the purpose to prevent damage of natural disaster, localized heavy rain and drought, and has several functions; promotion, education and region culture community. Exhibition space in this culture pavilion should have the excellent connection of various media, contents, and exhibition space because of limited space. The purpose of this study is to analyze flows, continuation and connection of exhibit space with the perspectives of the attribute of water and to suggest various content things, technical, spatial types. This study targets Four-major rivers Water Culture Pavilion in Korea and suggests exhibition presentation methods as analyzing contents, media and constituent of exhibition space for each pavilion exhibition. The result of this study is as follows : First, the circulation is common expressed attribute of water in these four water culture pavilion. The reason is that there is a connection between Four-major rivers restoration projects and the physical attribute of water circulating the steps of evaporation, condensation and precipitation. Second, each pavilion presents circulative solid exhibit, circulative background exhibit, circulative reflective exhibit based on circulation. These three types of exhibition is related the floor separation. Third, each pavilion exhibit zone shows the most circulation, solid, background, reflexibility through educational contents and promoting contents by using graphic, video, sound media.

  • PDF

An Environmental Effect on Productivity of Flounder Culture Farms (넙치양식장 환경에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.3
    • /
    • pp.79-93
    • /
    • 2011
  • Water temperature of Oliver flounder farm affects Oliver flounder growth and mortality rate. In laboratory experimental tanks, optimal water temperature was $22.5^{\circ}C$($21{\sim}24^{\circ}C$) and cultivatable water temperature was $12{\sim}28^{\circ}C$. The purpose of this study is to identify applicable and useful water temperature of Oliver flounder farm in case of actual farming. The data applied in the analysis was collected from Jeju island. In the study, various analytical methods including productivity analysis, regression analysis, statistical analysis were conducted for 13 Oliver flounder culture farms. The result of analysis can be summarized as follows : First, growth rate on the Oliver flounder culture farms was related to mean of water temperature, variation of water temperature and low water temperature. Second, survival rate on the Oliver flounder culture farms was related to mean of water temperature. In case of including Oliver flounder stocking density, defined as the surface area of Oliver flounder per $m^2$ of water surface area, survival rate strongly related to mean of water temperature, variation of water temperature, cultivating capability and stocking density. Third, production weight per $m^2$ of water surface area was strongly related to mean of water temperature, low water temperature and cultivating capability. Growth rate and survival rate was analyzed into mediate variable character.

Mass Culture of Ultra-small Rotifer, Synchaeta kitina at the Exchange Rate of Culture Water and Initial Inoculation Density (환수율 및 접종밀도에 따른 초소형 rotifer, Synchaeta kitina의 대량배양)

  • Oh, Jeong-Soo;Park, Jin-Chul;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.354-359
    • /
    • 2009
  • The productivity of ultra-small rotifer, Synchaeta kitina was investigated at the exchange rate of culture water (10, 20, 30, 40 and 50%) and initial inoculation densities (250, 600 and 900 inds. per mL) in semi-continuous culture. Also, the possibility of mass culture was investigated in a 100 L culture tank. Tetraselmis suecica was used as the feed for S. kitina in all experiments. The production of S. kitina increased with an increase in exchange rate of culture water. The highest production ($82.0{\times}10^5$ inds.) was achieved at 40% exchange rate of culture water. The production of S. kitina increased with an increase of initial inoculation density during the first week and the highest total production ($17.4{\times}10^6$ inds.) was achieved at 900 inds. per mL of initial inoculation density. However, on the second week, all treatments were not significantly different in total production (P>0.05). During the two weeks, total production of S. kitina at 900 inds. per mL of initial inoculation density was higher than at 600 inds. of initial inoculation density, but there was no significant difference (P>0.05). In the 100 L culture tank, density of S. kitina was kept from 516 to 890 inds. per mL and S. kitina was daily harvested $15.5{\times}10^6$ to $26.7{\times}10^6$ during the experimental period. The production cost for 100 million rotifers in semi-continuous culture was 63,656 won. The results from this study indicate that the optimal exchange rate of culture water and initial inoculation density for the semi-continuous culture of ultra-small rotifer, S. kitina are 40% and 600 inds. per mL, respectively.

Reuse of Reclaimed Water for Irrigation on Paddy Rice Culture and Its Effect

  • Chun G. Yoon;Ham, Jong-Hwa;Jeon, Ji-Hong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.14-24
    • /
    • 2002
  • The effect of reclaimed water irrigation on paddy rice culture was evaluated by pilot study at the experimental field of Konkuk University in Seoul, Korea. The sewage was treated by constructed wetland system, and its effluent was used as irrigation water for four treatments and one control plots with three replications. Irrigation of reclaimed water onto paddy rice cultures did not adversely affect the growth and yield of rice. Instead, experimental rice plots of reclaimed water irrigation displayed about 10 to 50% more yield on average than controls. This implies that reclaimed water irrigation might be beneficial rather than harmful to rice culture as long as the sewage is treated adequately and used properly. The amount of irrigation water had little effect on experimental rice cultures, but its strength was important. The strength of treated sewage was not a limiting factor in this study, and no lodging was observed even with a relatively high nitrogen concentration (up to 160mg/L). In general the paddy soil was not affected by reclaimed water irrigation. However, there was an indication that continuous irrigation with high strength of reclaimed water might cause salt accumulation in the soil. Supplemental use of reclaimed water with existing sources of irrigation water is recommended rather than irrigation with a single source of reclaimed water. Overall, the results demonstrated that reclaimed water could be reused as a supplemental source of irrigation water for paddy rice culture without causing adverse effects as long as it is properly managed. For full-scale application, further investigation should be done on environmental risks, tolerable water quality, and fraction of supplemental irrigation.

Studies on the Water Consumption and Growth of Vegetables Cultivated by Hydroponics in' the Green House (시설채소의 수경재배방법별 소비수량과 생육에 관한 연구)

  • 김시원;이경희;김유현;김선주;임창영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.31-44
    • /
    • 1989
  • In the vinyl house cultivation, the water consumption, evapotnanspirafion ratio, growth condifion by the growing stages and yields of tomato and cucumber were investigated when they cultivated by nutriculture, rice hull charcoal culture and NFF culture. The results obtained are summarized as follows: 1. The mean air temperature in the vinyl house during the experimental perica j was 1.9$^{\circ}$C higher than the outdoor air temperature, the rrnocirnum and minimum air temperature in the vinyl house was 4.6C and 1.7$^{\circ}$C higher than the outdoor temperature, respectively, and the mean daily evaporation in the vinyl house during the experimental period was 4.3rnm that is 02rnrn more than the outdoor evaporation 2. In the tomato cultivation, the growth of rice hull charcoal culture was the best among the three methods, and the growth of NFT culture and nutriculture were worse than the soil cultivation which is standard, and among the nutriculture, the growth of EC 1.3m.mho plot was the best. 3. In the cucumber cultivation, the growth of rice hull charcoal culture was the best, and while the growth condition of NFT culture was worse than the standard soil cultivation, the growth of nutriculture was better than the standard soil cultivation, and the growth of EC 1.3m.mho plot was the highest among the different treatments in the nutriculture. 4. In the tomato cultivation, the total water consumption of rice hull charcoal culture plot was 1107.5rnm which is the highest amount among the three methods, and in the nutriculture, the total water consumption of EC 1.3m.mho plot was 22lAmm which is the highest among the three different treatments. 5. In the cucumber cultivation, the total water consumption of rice hull charcoal culture was 11762rnm which is the highest, and the total water consumption of EC 1.3m.mho plot was 284.9rnm which is more than the 278.9mm of EC 1.Smmho plot and 262.9mm of EC 1.7rnmho plot. 6. The crop coefficient(Kc) of tomato was 0.82 in NFT culture, 4.67 in rice hull charcoar culture and 0.86~0.91 in nutriculture. 7. The crop coefficient(Kc) of cucumber was higher than tomato as 1.13 in NFT culture, 520 in rice hull charcoal culture and 1.08~1.19 in nutriculture. 8. The evapotranspiration ratio in the mid and late season were higher than the beginning and elongation stage, and the average evaportranspiration ratio of tomato and cucumber was 3.81 and 424, respectively, in the rice hull charcoal culture plot. 9. In the tomato cultivation, the total yield per plant of rice bull charcoal culture was 1443.Og which is the highest, and in the nutriculture, their yields were worse because of the damage of downy nidew disease. 10. In the cucumber cultivation, the total yield per plant of rice hull charcoal culture was 1965.7g which is the highest, and while the yield of NFT culture was ahout 25% lower than the stadard soil cultivation, the yield of nutriculture was higher than the standard soil cultivation, and among the treatments in the nutriculture, the yield of EC 1.3m.mho plot was the highest.

  • PDF

Evaluation of Riverine Microbial Diversity using the Culture-Independent Genetic Fingerprinting Technique (T-RFLP) (유전자지문분석법(T-RFLP)을 이용한 하천 미생물의 다양성 평가)

  • Jeong, Ju-Yong;Lee, Kyong-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.195-200
    • /
    • 2008
  • To analyze the riverine microbial community structure, genetic fingerprints and ecological indexes such as species abundances, diversity, evenness, dominance of targeted rivers in Gyeonggi Province were acquired and evaluated using terminal restriction fragment length polymorphism (T-RFLP) technique. Genetic fingerprinting technique such as T-RFLP, which is able to show the microbial community clearly unlike traditional culture-dependent techniques, was thought to be useful to analyse the riverine microbial ecosystem under various factors. Riverine ecosystem evaluation using visible organisms would give biased results with time, targeted organism and researcher. But, T-RFLP, which can exclude the subjected biases such as culture condition and identification, would be an option to understand natural ecosystem by including the microorganisms that defy culture but perform important functions.

A simple culture technique of Rhodobacter azotoformans EBN-7 for public use: application to NH4+-N removal in shrimp aquaculture water

  • Cho, Kyoung Sook;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.10
    • /
    • pp.525-536
    • /
    • 2022
  • Photosynthetic bacteria (PSB) attract considerable interest as useful microorganisms; nevertheless, a generalized culture technique has not been previously reported owing to difficulty in their cultivation. Therefore, a simple culture technique suitable for public use was investigated. Among the PSB tested, the strain Rhodobacter azotoformans EBN-7 was the most suitable for scale-up production because it showed the highest specific growth rate (0.20 h-1) on basal medium. In scale-up cultivation (500 L), R. azotoformans EBN-7 showed 4.50 × 1010 colony-forming units mL-1 (number of viable cells), dry cell weight of 26.8 g/L, and a specific growth rate of 0.15 h-1. Cultivation using this final culture broth (as seed culture) in a 15 L simple reactor was successful, with maintenance of cell activity evident. For use as seed culture, the maximum allowable preservation period of R. azotoformans EBN-7 at 4℃ was 3 months. When R. azotoformans EBN-7 cultivated in a simple technique was applied to shrimp aquaculture water, NH4+-N was reduced from 0.61 mg/L to 0.24 mg/L (by 60.7%) in 4 days in comparison with the control. Thus, this simple culture technique using R. azotoformans EBN-7 has the potential for a good removal efficiency of NH4+-N, making seed culture easier and suitable for public use.

Super-intensive Culture of Whiteleg Shrimp, Litopenaeus vannamei (Boone, 1931), in HDPE-lined Ponds with no Water Exchange (사육수 비교환방식을 이용한 포장 사육지에서의 흰다리새우, Litopenaeus vannamei (Boone, 1931)의 초고밀도양식)

  • Cho, Yeong-Rok;Kim, Bong-Rae;Jang, In-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2010
  • Shrimp farming is the most important mariculture industry on the west coast of South Korea. However, it has suffered from mass mortality due to viral disease outbreaks and coastal pollution due to water discharge. This study developed an intensive shrimp culture method for outdoor ponds, without water exchange, which minimizes the chance of viral transmission from the environment, reduces coastal pollution by water discharge and enhances shrimp production. A culture trial was conducted in two high-density polyethylene (HDPE)-lined ponds with a $550\;m^2$ surface area. The ponds were stocked with postlarvae of Litopenaeus vannamei, the major farmed shrimp species in Korea, on July 10, 2007, and cultured for 90 days with no water exchange. The stocking density of the postlarvae (B.W. 0.0015 g) was $272\;ind./m^2$, which is eight times higher than in traditional pond culture in Korea. At harvest, the total production of ponds 1 and 2 was 1,362kg ($2.48\;kg/m^2$) and 1,282 kg ($2.33\;kg/m^2$), respectively. This is 20~22 times higher than the mean farmed shrimp production ($0.112\;kg/m^2$) in Korea and about eight times higher than in traditional ponds with a good harvest. Although there was no water exchange throughout the culture period, the mean concentrations of unionized ammonia and nitrite-nitrogen were as low as 0.038 and 6.0 mg/L, respectively. The feed conversion rate (FCR) was 1.38, which is 20~45% lower than that of traditional pond cultures. The high efficiency of the diet in this study is thought to be due to a well-managed feeding strategy and well-developed bioflocs used as diet additions for the shrimp. The final body weight of the shrimp at harvest was low (12.2~12.5 g), compared with that of traditional pond culture. This may have resulted from the combination of a short culture period, high density of shrimp, and low temperature. This study suggests that a super-intensive shrimp pond culture method using biofloc technology with no water exchange can minimize viral transmission via water exchange, reduce coastal pollution, and enhance shrimp production.

Analysis of Operational Plan and Economical Validity in Aquacultural for Contingency Red Tide (적조 대응 육상양식장 운영방안 및 경제적 타당성 분석)

  • Lee, Kwang-Nam
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.3
    • /
    • pp.35-52
    • /
    • 2016
  • This paper analyzed economic feasibility of aquacultural construction which of large-scale. The results of the economic analysis, cage cultural and water recycling cultural by post-water treatment were analyzed that NPV is 2,083,685 thousand won and -14,105,896 thousand won and B/C ratio is 0.590 and 0.855, respectively. These were shown economic infeasibility. But, running water culture by pre-water treatment(small scale) and running water culture by pre-water treatment(large scale) were analyzed that the one is 5,555,747 thousand won and 15,048,589 thousand won and the other is 1,154 and 1,1221, respectively. these were shown economic feasibility. In addition, measurement of B/C ratio through a sensitivity analysis on running water cultural by pre-water treatment(small scale) and running water cultural by pre-water treatment(large scale) is economic feasibility in all cases. However, these were analyzed when the selling price was falling to 20 percent, it has shown economic infeasibility and when the selling price rises to 20 percent, water recycling culture by post-water treatment has economic feasibility. The significance of the study analyzed a sensibility as well as economic feasibility by methods and scales. It is expected that used as basic materials when constructing and operating of land aquaculture in order to minimize the damage from natural disasters.

Review of the Agricultural Water Quality Standards through Rice Culture with Treated Sewage Irrigation (오수처리수 관개 벼재배를 통한 농업용수 수질기준의 검토)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.44-54
    • /
    • 1999
  • Agricultural water quality standards were reviewed through rice culture using treated sewage irrigation . The seqage from school building of Konkuk University was treated by a constructed wetland system, and theeffluent of the systeml was irrigated for rice culutre after nutrient concentration adjusted by dilution. Average concentration of COD, SS, T-N and T-P in irrigated water was 22.3mg/$\ell$, 6.5mg/$\ell$, 25.8 mg/$\ell$and 2.2mg/$\ell$, respectively. Treatment include irrigation of adjusted effluent with conventional fertilization (TWCF), adjusted effluent with no fertilization (TWNF). and effluent of the wetland system as it was with no fertilization (SWNF). These treatment plots were compared with control plot irrigated by tap water with conventional fertilization (CONTROL). Other environmentals for rice culture were identical for all the plots. Among them, TWCF showed the best growth rate and the highest yield, and constituents in the harvested rice showed not much difference among them. Which implies that irrigation with relatively high nutrient concentration compared to the current water quality standards may cause no adverse effect on rice culture and could be even beneficial . Although T-N for this study was 25 times greater than the current standards, rice culture wasnot adversely affected by irrigatino water quality and even beeter results were observed than the CONTROL. It could be mistakenly that clean irrigation water produces better agricultural product, however, it is not necessarily true. Irrigation water with moderate nutrient concentration can enhance the plant growth, and better result might be expected. Therefore, peer review and modification if necessary are needed to the current agricultural water quality standards, especially for the nutrient components.

  • PDF