Browse > Article

Evaluation of Riverine Microbial Diversity using the Culture-Independent Genetic Fingerprinting Technique (T-RFLP)  

Jeong, Ju-Yong (Department of Water Quality Research, Gyeonggido Institute of Health and Environment)
Lee, Kyong-Hee (Department of Water Quality Research, Gyeonggido Institute of Health and Environment)
Publication Information
Abstract
To analyze the riverine microbial community structure, genetic fingerprints and ecological indexes such as species abundances, diversity, evenness, dominance of targeted rivers in Gyeonggi Province were acquired and evaluated using terminal restriction fragment length polymorphism (T-RFLP) technique. Genetic fingerprinting technique such as T-RFLP, which is able to show the microbial community clearly unlike traditional culture-dependent techniques, was thought to be useful to analyse the riverine microbial ecosystem under various factors. Riverine ecosystem evaluation using visible organisms would give biased results with time, targeted organism and researcher. But, T-RFLP, which can exclude the subjected biases such as culture condition and identification, would be an option to understand natural ecosystem by including the microorganisms that defy culture but perform important functions.
Keywords
Culture-dependent; Ecological indexes; Riverine; Terminal restriction fragment length polymorphism (T-RFLP);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dunbar, J., Ticknor, L. O. and Kuske, C. R. (2001). Phylogenetic Specificity and Reproducibility and New Method for Analysis of Terminal Restriction Fragment Profiles of 16S rRNA Genes from Bacterial Communities. Appl. Envir. Microbiol., 67(1), pp. 190-197   DOI   ScienceOn
2 Blackwood, C. B., Marsh, T., Kim, S. H. and Paul, E. A. (2003). Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl. Envir. Microbiol., 69(2), pp. 926-932   DOI
3 Cho, J. C. and Kim, S. J. (2000). Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Envir. Microbiol., 66(7), pp. 956-965   DOI
4 Eichner, C. A., Erb, R. W., Timmis, K. N. and Wagner-Dobler, I. (1999). Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol., 65(1), pp. 102-109   PUBMED
5 Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blaski, A., Wu, K. and DeLong, E. F. (1998). Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers island, Antarctica. Appl. Envir. Microbiol., 64(7), pp. 2585-2595
6 Page, K. A., Connon, S. A. and Giovannoni, S. J. (2004). Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl. Envir. Microbiol., 70(11), pp. 6542-6550   DOI   ScienceOn
7 Somerville, C. C., Knight, I. T., Straube, W. L. and Colwell, R. R. (1989). Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Envir. Microbiol., 55(3), pp. 548-554
8 Head, J. M., Saunders, J. R. and Pickup, R. W. (1998). Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial ecology, 35(1), pp. 1-21   DOI
9 Crump, B. C., Armbrust, E. V. and Baross, J. A. (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl. Envir. Microbiol., 65(7), pp. 3192-3204
10 Bent, S. J., Pierson, J. D., Forney, L. J., Danovaro, R., Luna, G. M., Dell'Anno, A. and Pietrangeli, B. (2007). Measuring species richness based on microbial community fingerprints: the emperor has no clothes. Appl. Envir. Microbiol., 73(7), pp. 2399-2401   DOI   ScienceOn
11 Gonzales-Toris, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R. and Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto river. Appl. Envir. Microbiol., 69(8), pp. 4853-4865   DOI
12 권계경, 정성영, 이정현, 김상진, 현정호(2004). 다환방향족 탄화수소가 광양만 퇴적토의 미생물 군집구조에 미치는 영향. 환경생물학회지, 22, pp. 38-46   PUBMED
13 Hugenholtz, P., Goebel, B. M. and Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. of bacteriol., 180(18), pp. 4764-4774
14 Brummer, I. H., Fehr, W. and Wagner-Dobler, I. (2000). Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl. Envir. Microbiol., 66(7), pp. 3078-3082   DOI
15 Mehta, M. P., Butterfield, D. A. and Baross, J. A. (2003). Phylogenetic diversity of nitrogenase (nifH) genes in deep-Sea and hydrothermal vent environments of the Juan de Fuca ridge. Appl. Envir. Microbiol., 69(2), pp. 690-670
16 Moeseneder, M. M., Arrieta, J. M., Muyzer, G. and Herndl, G. J. (1999). Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterio-plankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Envir. Microbiol., 65(8), pp. 3518-3525
17 Hewson, I. and Fuhrman, J. A. (2004). Richness and diversity of a bacterioplankton species along an estuarine gradient in Moreton bay, Australia. Appl. Envir. Microbiol., 70(6), pp. 3425-3433   DOI   ScienceOn