• Title/Summary/Keyword: Water Crown

Search Result 217, Processing Time 0.033 seconds

Numerical Simulation on Seepage and Seismic Behaviors of Poorly-Compacted Raised Reservoir Levee (다짐시공이 불량한 증고 저수지 제체의 침투 및 동적거동 해석)

  • Lee, Chung-Won;Park, Sung-Yong;Oh, Hyeon-Mun;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.85-99
    • /
    • 2015
  • It is urgent to redevelop the superannuated reservoir levee through the levee raising for countermeasure to climate change and improvement of storage capacity of reservoir. However, low compaction degree of the raised reservoir levee owing to poor construction condition leads to degradation of the stability of the reservoir levee on seepage and earthquake. In this study, seepage and seismic behavior of raised reservoir levee with low compaction degree was evaluated through numerical simulation. From the simulated results, water level raising possibly induces crack and/or sinkhole on the surface of the poorly-compacted raised reservoir levee owing to the increase of the subsidences at the crown and the front side of that. In addition, relatively larger displacement and acceleration response at the front side of raised reservoir levee in seismic condition may degrade overall stability of reservoir levee. Therefore, reasonable construction management for the compaction of the raised reservoir levee is required for ensuring long-term stability on seepage and earthquake.

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

A STUDY ON THE COLOR STABILITY OF PORCELAIN FOR PORCELAIN FUSED TO METAL CROWN (도재전장주조관에 사용되는 도재의 색안정성에 관한 연구)

  • Ryu, So-Young;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.73-84
    • /
    • 2000
  • Dental porcelain should have adequate strength and similar esthetics as natural teeth. Recently esthetics has become a high priority in clinical dentistry. Thus the evaluation of color stability of dental porcelain has become an important part in dental research. The purpose of this study was to evaluate the difference in color stability of 3 types of porcelain(Vintage, VMK 95, CERAMCO II). The porcelain were divided into groups by 2 types of treatment(glazing or non-glazing and thermocycling or non-thermocycling). The porcelain were dyed with methylene blue and distilled water, and then the color stability was evaluated with a spectrophotometer The results were as follows; 1. The color change of porcelain increased in the order of VMK 95, Vintage, CERAMCO II. But there was no significant difference. 2. The color change decreased in the glazing group compared to the non-glazing group(p<0.05). 3. The color change increased after thermocycling But there was no significant difference. 4. The color change according to dye method was significantly larger with methylene blue copared to distilled water(p<0.05).

  • PDF

Runoff and Unsteady Pipe Flow Computation (유출과 부정류 관수로 흐름 계산에 관한 연구)

  • Jeon, Byeong-Ho;Lee, Jae-Cheol;Gwon, Yeong-Ha
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.251-263
    • /
    • 1990
  • For surcharge flow in a sewer, the slot technique simulates surcharge flow as open - channel flow using a hypothetical narrow open piezometric slot at the sewer crown. The flow in a sewer is described mathematically using the unsteady open - channel Saint-Venant equations. In this study, the computer simulation model(USS-slot) using slot techniques is develeped to simulate the inlet hydrographs to manholes and the flow under pressure as well as free - surface flow in tree - type sewer networks of circular conduits. The inlet hydrographs are simulated by using the rational method or the ILSD progrm. The Saint-Venant equations for unsteady open - channel flow in seweres are solved by using a four - point implicit difference scheme. The flow equations of the sewers and the junction flow equations are solved simulaneously using a sparse matrix solution technique.

  • PDF

Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

  • Lee, Kwang-Pill;Choi, Seong-Ho;Park, Yu-Chul;Bae, Zun-Ung;Lee, Mu-Sang;Lee, Sang-Hak;Chang, Hye-Yong;Kwon, Se-Mok;Kazuhiko Tanaka
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1324-1328
    • /
    • 2003
  • The simultaneous determination of anions ($SO_4 ^{2-},\;Cl^-,\;and\;NO_3^-$) and cations ($Na^+,\;NH^{4+},\;K^+,\;Mg^{2+},\;and\;Ca^{2+}$) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cationexchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the $H^+$-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

Regeneration of a Micro-Scratched Tooth Enamel Layer by Nanoscale Hydroxyapatite Solution

  • Ryu, Su-Chak;Lim, Byoung-Ki;Sun, Fangfang;Koh, Kwang-Nak;Han, Dong-Wook;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.887-890
    • /
    • 2009
  • Hydroxyapatite (HAp)-based materials have attracted considerable attention on account of their excellent stability and recrystallization. Nanoscale HAp powders with a mean particle size of 200 nm were used to regenerate the enamel layers of damaged teeth. An artificially scratched tooth was immersed in a nanoscale HAp powder suspension in d.i. water (HAp of 70 wt%) at 37 ${^{\circ}C}$ for a period of 1~3 months. SEM and AFM showed that the scratched surface was ultimately inlaid with HAp after three months and the roughness increased from 2.80 to 5.51. Moreover, the hardness of the neo-generated HAp layer on the crown was similar to that of the innate layer. $Ca^{2+}$ and ${PO_4}^{3-}$ ions from the HAp powders dissolved in d.i. water were precipitated on the tooth to produce cemented pasteson the enamel surface due to its high recrystallizing characteristics, resulting in a hard neo-regenerated HAp layer on the enamel layer. This nanoscale HAp powder solution might be used to heal decayed teeth as well as to develop tooth whitening appliances.

An Experimental Study on the Collapse Phase of a River Leeve(I) -Effects of the Geometric Characteristics of Cross Section (하천제방 붕괴 양상의 실험적 연구(I) - 단면의 기하학적 특성치의 영향)

  • Lee, Sang-Tae;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.141-154
    • /
    • 2001
  • An experimental study was performed to investigate the effects of levee crest width and the slope steepness on levee break due to overtopping flow. The phenomenon of bank failure can be described in 4 stages. In this study, the magnitudes of breach width, breach depth peak discharge, and scouring shape at the break site were measured, and the result shows that peak discharge will be reduced and breach duration extended by widening the crown width and lessening the levee slope steepness. The breach width was narrower and the breach depth deeper, as the levee crest width become wider or the slope steeper. And, the bed scour depth was deeper and steeper, as the levee crest crest width become narrower or the slope milder.

  • PDF

A Study on Establishment of the Levee GIS Database Using LiDAR Data and WAMIS Information (LiDAR 자료와 WAMIS 정보를 활용한 제방 GIS 데이터베이스 구축에 관한 연구)

  • Choing, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.104-115
    • /
    • 2014
  • A levee is defined as an man-made structure protecting the areas from temporary flooding. This paper suggests a methodology for establishing the levee GIS database using the airborne topographic LiDAR(Light Detection and Ranging) data taken in the Nakdong river basins and the WAMIS(WAter Management Information System) information. First, the National Levee Database(NLD) established by the USACE(United States Army Corps Engineers) and the levee information tables established by the WAMIS are compared and analyzed. For extracting the levee information from the LiDAR data, the DSM(Digital Surface Model) is generated from the LiDAR point clouds by using the interpolation method. Then, the slope map is generated by calculating the maximum rates of elevation difference between each pixel of the DSM and its neighboring pixels. The slope classification method is employed to extract the levee component polygons such as the levee crown polygons and the levee slope polygons from the slope map. Then, the levee information database is established by integrating the attributes extracted from the identified levee crown and slope polygons with the information provided by the WAMIS. Finally, this paper discusses the advantages and limitations of the levee GIS database established by only using the LiDAR data and suggests a future work for improving the quality of the database.

A STUDY ON THE TENSILE STRENGTH OF REINFORCED VENEERING COMPOSITE RESINS FOR CROWN (강화형 치관용 복합레진의 인장강도에 관한 연구)

  • Ahn, Seung-Geun;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.226-241
    • /
    • 2000
  • Recently a new generation of crown and bridge veneering resins containing submicron glass fillers was introduced. These ultrasmall particle hybrid composite materials distinguish themselves, compared with conventional microfill crown and bridge resins, through improved mechanical properties. It is claimed that these composites are suitable for metal free crowns and even bridges using fiber reinforcement. The purpose of this study was to evaluate the effect of thermal cycling on the tensile strength of the following veneering composites: Artglass(Heraeus Kulzer Co., Wehrheim, Germany), Estonia(Kuraray Co.. Japan), Sculpture(Jeneric Pentron Co., Wallingford, U.S.A.), and Targis(Ivoclar Co., Schaan Liechenstein). According to manufacturer's instructions, rectangular tensile test specimens measuring $1.5{\times}2.0{\times}4.5mm$ were made using a teflon mold. Whole specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 10 days, and another group was subjected to thermal cycling($10,000{\times}$) in water($5/55^{\circ}C$). All test specimens were placed in a universal testing machine and loaded until fracture with a crosshead speed of 0.5mm/min. Weibull analysis and Tukey's test were used to analyze the data. The fracture surfaces of specimens were observed in SEM and the aliphatic C=C absorbance peak of Estenia and Targis resin was analyzed using Fourier transform infrared(FTIR) spectroscopy. Within the limitations imposed in this study, the following conclusions can be drawn: 1. Both in drying condition and thermal cycling condition, the highest tensile strength was observed in Estenia testing group(p<0.05). 2. The strength data were at to single-mode Weibull distribution, and the Weibull modulus of all veneering composite resin specimens increased after thermal cycling treatment. 3. After thermal cycling test, the highest tensile strength was observed in the Estenia group, and the lowest value was observed in the Targis group. The tensile strength values showed the significant differences between each group(p<0.05) 4. The aliphatic C=C absorbance peak of Estonia and Targis resin was decreased after light curing, and there was no distinct change after thermal cycling.

  • PDF

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul;Sander, Anna;Wu, Yanyun;Felber, Roland;Lauer, Hans-Christoph;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.