• Title/Summary/Keyword: Water Consumption Modeling

Search Result 36, Processing Time 0.033 seconds

Roll/Pitch Attitude Control of an Underwater Robot using Ballast Tanks (밸러스트 탱크를 이용한 수중로봇의 Roll/Pitch의 자세제어)

  • Choi, Sunghee;Do, Jinhyung;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.688-693
    • /
    • 2013
  • This paper proposes a new method on attitude control of an underwater robot by using five ABTs (Attitude Ballast Tank). A pipe is connected to the bottom of the ABTs and transfers water by a pump, while another pipe is connected to the top of the ABT to transfer air. The buoyancy center of the underwater robot can be changed by means of the water transfer. This way, the attitude of the underwater robot can be maintained and/or controlled as desired. The changes of the center of gravity and the buoyancy central are estimated by a Lagrangian function which is similar to that for an inverted pendulum. The controller in this paper is designed by modeling of the underwater robot and selecting suitable gains of a PD controller which has fast response characteristics. This paper shows the possibility of the attitude control of an underwater robot by changing the center of gravity and the buoyancy center of the robot. Moreover, experimental results verify that the controller is effective in maintaining Roll/Pitch of the underwater robot with very low power consumption.

A Study on Modeling of Users a Load Usage Pattern in Home Energy Management System Using a Copula Function and the Application (Copula 함수를 이용한 HEMS 내 전력소비자의 부하 사용패턴 모델링 및 그 적용에 관한 연구)

  • Shin, Je-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • This paper addresses the load usage scheduling in the HEMS for residential power consumers. The HEMS would lead the residential users to change their power usage, so as to minimize the cost in response to external information such as a time-varying electricity price, the outside temperature. However, there may be a consumer's inconvenience in the change of the power usage. In order to improve this, it is required to understand the pattern of load usage according to the external information. Therefore, this paper suggests a methodology to model the load usage pattern, which classifies home appliances according to external information affecting the load usage and models the usage pattern for each appliance based on a copula function representing the correlation between variables. The modeled pattern would be reflected as a constraint condition for an optimal load usage scheduling problem in HEMS. To explain an application of the methodology, a case study is performed on an electrical water heater (EWH) and an optimal load usage scheduling for EHW is performed based on the branch-and-bound method. From the case study, it is shown that the load usage pattern can contribute to an efficient power consumption.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

Intelligent Controller for Constant Control of Residual Chlorine in Water Treatment Process (정수장 잔류염소 일정제어를 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Jang, Sang-Bok;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • In this study, chlorine modeling technique based on fuzzy system is proposed to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin according to detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rule. It helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 7.3 times and the chlorine consumption by 40,000 dollars. It made a significant contribution to supply hygienically safe drinking water.

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

Estimation of a Transport and Distribution of COD using Eco-hydrodynamic Model in Jinhae Bay (생태계 모델을 이용한 진해만의 COD의 거동과 분포특성 평가)

  • Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Park, Sung-Eun;Jang, Ju-Hyung;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1369-1382
    • /
    • 2007
  • To find proper water quality management strategy for oxygen consumption organic matters in Jinhae bay, the physical process and net supply/decomposition in terms of COD was estimated by three-dimensional eco-hydrodynamic modeling. The estimation results of physical process in terms of COD showed that transportation of COD was dominant in loading area from land to sea, while accumulation of COD was dominant in $middle{\sim}bottom$ level. In case of surface level, the net supply rate of COD was $0{\sim}60\;mg/m^2/day$. The net decomposition rate of COD was $0{\sim}-0.05\;mg/m^2/day$($-5{\sim}-10$ m, in depth) to 2 level, and $-0.05{\sim}-0.20\;mg/m^2/day(10m{\sim})$ to bottom level. These results indicate that the biological decomposition and physical accumulation of COD are occurred for the most part of Jinhae Bay bottom. The variation of net supply or net decomposition rate of COD as reducing land based input loading is also remarkable. Therefore, it is important to consider both allochthonous and autochthonous oxygen demanding organic matters to improve the water quality of Jinhae Bay.

Three-Dimensional Water Quality Modeling of Chinhae Bay (진해만의 3차원 수질 모델링)

  • 김차겸;이필용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A three-dimensional hydrodynamic-ecosystem model was developed and applied to Chinhae Bay which is located in the southeastern sea of Korea. The model includes a three-dimensional hydrodynamic model and an eutrophication model, and the model operates on the same grid system. The agreement between predicted and measured results is reasonably encouraging. The concentrations of the calculated COD, DIN and DIP are appeared to be very high due to the phytoplankton production and the wastewater input in the northern part of Chinhae Bay. Anoxic and hypoxic water masses in the bottom layer occur in the northern part of the bay due to the excess loading of wastewater and strong stratification, and in the western inner part of the bay due to high oxygen consumption in densely populated aquaculturing facilities. DO concentration contours show parallel to the bay entrance line, which means the importance of supplying DO by physical process from the mouth of the bay. Although both the hydrodynamic and biochemical processes play important role to form the hypoxic waters in the bottom of the inner bay, it is suggested that the hydrodynamic conditions such as the vertical and the horizontal eddy diffusivity are primarily important factors.

  • PDF

A Study on the Viscosity Characteristics of Dewatered Sewage Sludge according to Thermal Hydrolysis Reaction (열가용화 반응에 의하여 탈수된 하수슬러지의 점도 특성에 관한 연구)

  • Song, Hyoung Woon;Han, Seong Kuk;Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • demand for a low-cost treatment technology is high because the sewage sludge has an 80% or higher water content and a high energy consumption cost. This study apply the thermal hydrolysis reaction that consumes a small amount of energy for sludge treatment. The purpose of this study is to quantify the viscosity of sewage sludge according to reaction temperature. we measured continuously the torque of dewatered sludge by the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermal hydrolysis under a high temperature and pressure. Therefore, the bond water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry of a liquid phase. The results of the viscosity measurements according to the reaction temperature showed that the viscosity was very high at $270,180kg/m{\cdot}sec$ at a temperature of 293K, but rapidly decreased with increases in the reaction temperature to $12kg/m{\cdot}sec$ at a temperature of 400K and to $4kg/m{\cdot}sec$ at a temperature of 460K or higher, similar to the changes in the viscosity of water. And we was obtained the viscosity function of boundary condition for the optimal design of thermal hydrolysis reactor by numerical modeling based on the this results.

Passage Planning in Coastal Waters for Maritime Autonomous Surface Ships using the D* Algorithm

  • Hyeong-Tak Lee;Hey-Min Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2023
  • Establishing a ship's passage plan is an essential step before it starts to sail. The research related to the automatic generation of ship passage plans is attracting attention because of the development of maritime autonomous surface ships. In coastal water navigation, the land, islands, and navigation rules need to be considered. From the path planning algorithm's perspective, a ship's passage planning is a global path-planning problem. Because conventional global path-planning methods such as Dijkstra and A* are time-consuming owing to the processes such as environmental modeling, it is difficult to modify a ship's passage plan during a voyage. Therefore, the D* algorithm was used to address these problems. The starting point was near Busan New Port, and the destination was Ulsan Port. The navigable area was designated based on a combination of the ship trajectory data and grid in the target area. The initial path plan generated using the D* algorithm was analyzed with 33 waypoints and a total distance of 113.946 km. The final path plan was simplified using the Douglas-Peucker algorithm. It was analyzed with a total distance of 110.156 km and 10 waypoints. This is approximately 3.05% less than the total distance of the initial passage plan of the ship. This study demonstrated the feasibility of automatically generating a path plan in coastal navigation for maritime autonomous surface ships using the D* algorithm. Using the shortest distance-based path planning algorithm, the ship's fuel consumption and sailing time can be minimized.