• Title/Summary/Keyword: Water Consumption Modeling

Search Result 36, Processing Time 0.025 seconds

Simultaneous water and energy saving of wet cooling towers, modeling for a sample building

  • Ataei, Abtin;Choi, Jun-Ki;Hamidzadeh, Zeinab;Bagheri, Navid
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.173-181
    • /
    • 2015
  • This article outlines a case study of water and energy savings in a typical building through a modelling process and analysis of simultaneous water-energy saving measures. Wet cooling towers are one of the most important equipments in buildings with a considerable amount of water and energy consumption. A variety of methods are provided to reduce water and energy consumption in these facilities. In this paper, thorough the modeling of a typical building, water and energy consumption are measured. Then, After application of modern methods known to be effective in saving water and energy, including the ozone treatment for cooling towers and shade installation for windows, i.e. fins and overhangs, the amount of water and energy saving are compared with the base case using the Simergy model. The annual water consumption of the building, by more than 50% reduction, has been reached to 500 cubic meters from 1024 cubic meters. The annual electric energy consumption has been decreased from 405,178 kWh to 340,944 kWh, which is about 16%. After modeling, monthly peak of electrical energy consumption of 49,428 has dropped to 40,562 kWh. The reduction of 18% in the monthly peak can largely reduce the expenses of electricity consumption at peak.

LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System (지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링)

  • Park, Young Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

Digital Twin based Household Water Consumption Forecasting using Agent Based Modeling

  • Sultan Alamri;Muhammad Saad Qaisar Alvi;Imran Usman;Adnan Idris
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • The continuous increase in urban population due to migration of mases from rural areas to big cities has set urban water supply under serious stress. Urban water resources face scarcity of available water quantity, which ultimately effects the water supply. It is high time to address this challenging problem by taking appropriate measures for the improvement of water utility services linked with better understanding of demand side management (DSM), which leads to an effective state of water supply governance. We propose a dynamic framework for preventive DSM that results in optimization of water resource management. This paper uses Agent Based Modeling (ABM) with Digital Twin (DT) to model water consumption behavior of a population and consequently forecast water demand. DT creates a digital clone of the system using physical model, sensors, and data analytics to integrate multi-physical quantities. By doing so, the proposed model replicates the physical settings to perform the remote monitoring and controlling jobs on the digital format, whilst offering support in decision making to the relevant authorities.

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

A Study on the Trend Analysis of Real-time Residential Water Consumption (주거용수 실시간 사용 추세패턴 분석)

  • Kim, Seong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3757-3763
    • /
    • 2012
  • This study ultimately aims at proposing an IT-based efficient method to solve one of the biggest problems currently faced by human beings which is lack of water. As a trial, targeting residential water, a chain of efforts was added such as choosing an appropriate field area and a censor, installing a sensor and the communication systems and servers, and monitoring the real time residential water consumption data. Then, a series of residential water consumption models was developed through the analyses of data gathered. And using the developed models, a series of trend analyses was performed for the residential water consumption. The research results shows that the developed models can be generalized and utilized for the water supply management purpose individually or along with the ones from the other water categories.

MODFLOW-Farm Process Modeling for Determining Effects of Agricultural Activities on Groundwater Levels and Groundwater Recharge

  • Bushira, Kedir Mohammed;Hernandez, Jorge Ramirez
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.17-30
    • /
    • 2019
  • Intensive agricultural development in Mexicali valley, Baja-California, Mexico, has induced tremendous strain on the limited water resources. Agricultural water consumption in the valley mainly relies on diversions of the Colorado River, but their water supply is far less than the demand. Hence, the use of groundwater for irrigation purposes has gained considerable attention. To account for these changes, it is important to evaluate surface water and groundwater conditions based on historical water use. This study identified the effects of agricultural activities on groundwater levels and groundwater recharge in the Mexicali valley (in irrigation unit 16) by a comprehensive MODFLOW Farm process (MF-FMP) numerical modeling. The MF-FMP modeling results showed that the water table in the study area is drawn downed, more in eastern areas. The inflow-outflow analysis demonstrated that recharge to the aquifer occurs in response to agricultural supplies. In general, the model provides MF-FMP simulations of natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand in the study area.

A study on energy efficiency improvement of waste-water treatment system by freeze concentration method (동결농축법을 이용한 폐수처리시스템의 에너지 효율 향상에 관한 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.467-476
    • /
    • 2013
  • Freeze concentration method has advantages of high thermodynamic efficiency, low energy consumption and purified water re-use. In this study, freeze concentration waste-water system which was designed as the small and medium sized capacity was analyzed about the rate of electric power consumption and the daily treatment capacity to suggest the direction of system development. At first, power consumption and operation time of the system with fresh water precooler or without it was calculated by computer modeling and analysis. Subsequently, the change of design treatment capacity was applied to the system with fresh water cooler. As a result, the rate of electric power consumption was higher as 0.6 Wh/kg but daily treatment capacity increased in quantity as 19 % in the system with fresh water precooler. As design treatment capacity increased, the rate of electric power consumption was lower and daily treatment capacity was larger in quantity.

A Development of Trend Analysis Models and a Process Integrating with GIS for Industrial Water Consumption Using Realtime Sensing Data (실시간 공업용수 추세패턴 모형개발 및 GIS 연계방안)

  • Kim, Seong-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • The purpose of this study is to develop a series of trend analysis models for industrial water consumption and to propose a blueprint for the integration of the developed models with GIS. For the consumption data acquisition, a real-time sensing technique was adopted. Data were transformed from the field equipments to the management server in every 5 minutes. The data acquired were substituted to a polynomial formula selected. As a result, a series of models were developed for the consumption of each day. A series of validation processes were applied to the developed models and the models were finalized. Then the finalized models were transformed to the average models representing a day's average consumption or an average daily consumption of each month. Demand pattern analyses were fulfilled through the visualization of the finally derived models. It has founded out that the demand patterns show great consistency and, therefore, it is concluded that high probability of demand forecasting for a day or for a season is available. Also proposed is the integration with GIS as an IT tool by which the developed forecasting models are utilized.

Ecological Modeling for Estimation of Environmental Characteristics in Masan Bay

  • Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.841-846
    • /
    • 2003
  • The ecosystem model was applied to estimate the regional distribution of the net production(or consumption) of phytoplankton and the net uptake(or regeneration) rate of nutrients in Masan Bay for scenario analysis to find a proper management plan. At the surface level, net production of phytoplankton is 200 mgC/㎡/day at the entrance of the bay, and 400∼1000 mgC/㎡/day at the center of the bay. The inner area of the bay showed more than 2000 mgC/㎡/day. All areas of the bottom level have a net consumption, with the center of the bottom level showing more than 600 mgC/㎡/day. For dissolved inorganic nitrogen, the results showed a net uptake rate of 100∼900 mg/㎡/day at the surface level. It showed that the net regeneration is above 50 mg/㎡/day at the bottom level. For dissolved inorganic phosphorus, the net uptake rate showed 10.0∼80.0 mg/㎡/day at the surface level, and the regeneration rate showed 0∼20.5 mg/㎡/day at the bottom level. Therefore, in order to control the water quality in Masan Bay, it is important to consider the re-supplement of nutrients regenerated in the water column.

Model based control of filter run time on potable water treatment plant

  • Jusic, Suvada;Milasinovic, Zoran
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.157-172
    • /
    • 2015
  • Control of potable water treatment plant (PWTP) is nowadays based on experience. The aim of this article is to show that model based control of treatment process is more efficient than process operation based on experience. Stimela environment is used for modeling of processes of potable water treatment. Application of the model was conducted on PWTP "Crkvice" in Zenica (BiH). This plant has used conventional rapid sand filters. By effective application of the model it is determined the optimal filter run time for different input turbidity of raw water. This results in the possibility of reducing the consumption of backwashing water, lower costs for its pumping and reducing the amount of coagulants. In the existing practice, based on experience, these benefits are not used.