• Title/Summary/Keyword: Water Column

Search Result 2,046, Processing Time 0.028 seconds

Non-destructive Inspection of Top Down construction Joints of Column in SRC Structure using Radar and Thermography Method (적외선법과 레이더법에 의한 콘크리트 역타시공 이음부위의 충진상태 평가시험)

  • 박석균;임영수;차은용;김명모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.799-804
    • /
    • 2000
  • The joint treatment of concrete is one of the technical problems in top down construction method. Joints created wit the top down construction result in serous weakness from the aspects of both structural and water-barrier function. Several case studies for the insepction of top down construction joints of column in SRC structure using radar and infrared thermography method. The advantages and limitations of these methods for non-destructive inspection in top own construction joints are investigated.

  • PDF

Non-destructive Inspection of Top Down Construction Joints of Column in SRC Structure using Ultrasonic Method (초음파법을 이용한 콘크리트 역타시공 이음부위의 비파괴검사)

  • 박석균;백운찬;이한범;김명모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.811-816
    • /
    • 2000
  • The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of column in SRC structure in this study. As a result it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints.

  • PDF

A Study on the Temperature Distribution of Thermally Protected Steel column Esposed to the Fire (화재시 내화피복철골기둥의 온도분포에 관한 연구)

  • hyeon, Cheol;Kim, Moon-Han
    • Fire Science and Engineering
    • /
    • v.5 no.1
    • /
    • pp.23-28
    • /
    • 1991
  • This paper is concerned with the numerical analysis of the temperature of steel columns when they are exposed to flame of a fire temperature curve in order to test resistivity against the fire. In this stuer a 2-dimensional heat conduction FDM was developed to predict the temperature dustribution of steel column under various construction conditions. A proposal to estimate the influence of free water content in the insulation also made.

  • PDF

Remediation of Diesel Contaminated Soil Using Flowing Subcritical Water (흐름식 아임계수에 의한 경유오염토양의 정화)

  • Li, Guang-Chun;Jung, Sun-Kook;Chung, Seon-Yong;Jo, Young-Tae;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.10-16
    • /
    • 2011
  • The experimental studies for remediation of diesel contaminated soils were performed using subcritical water in laboratory scale. Contaminated soils from industrial area and artificially contaminated soils were utilized for soil remediation. Experimental system was composed for subcritical water to flow upward through the soil packed column for extracting contaminants. 10 g of contaminated soil was packed into the column and water flow rate was 2 mL/min. To evaluate the effects of temperature, pressure and treatment time on the removal efficiency, temperature was changed from 100$^{\circ}C$ to 350$^{\circ}C$, pressure from 50 bar to 220 bar and treatment time at the predetermined temperature from 0 min to 120 min. The purification efficiency increased as temperature increased. However, the effect of pressure and treatment time was low. Temperature 250$^{\circ}C$, pressure 50 bar and treatment time 30 min were selected for optimal operating condition for this study.

A Study on Phosphorus Removal Process Using Steel Industry By-Products(Slag) at Dynamic condition (동적(動的) 상태(狀態)에서 산업(産業) 폐기물(廢棄物)을 이용(利用)한 인(燐) 제거(除去)에 관한 연구(硏究))

  • Lee, Seung-Hwan;Ahn, Kyu-Hong;Yoon, Jong-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 1996
  • Excessive phosphorus (P as orthophosphate) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by slag is an attractive solution if the P sorption capacity of the slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed column experiments were conducted to study the P transport under dynamic condition, and mathematical models were developed to describe this process. The column experiments conducted with dust and cake waste products (slag) from BHP steel industry in Australia as adsorbing media indicated that they had higher sorption capacity of P than that of a sandy loam soil from North Sydney, Australia. P transport in the dust and cake columns exhibited characteristics S-shaped or curvilinear breakthrough curves. The simulated results from a dynamic physical non-equilibrium sorption model (DPNSM) and Freundlich isotherm constants satisfactorily matched the corresponding experimental breakthrough data. The mobility of P is restricted proportionally to the adsorbent's sorption capacity.

  • PDF

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed;Fleming, Alan;Macfarlane, Gregor;Leong, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-99
    • /
    • 2017
  • Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

A Study on the SCW Ground Source Heat Pump System Technologies for Residential Cluster Homes (수주지열정 지열원 열펌프 시스템의 집단주거시설 적용을 위한 기반 기술 분석)

  • Lee, Kwang Ho;Do, Sung Lok;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.3
    • /
    • pp.14-20
    • /
    • 2019
  • In this study, the technologies and regulations for distributing standing column well(SCW) ground source heat pump systems to the residential cluster homes were investigated. They have only been installed in the public or commercial building having different load pattern and site structure compared with the residential cluster homes. Some of SCWs for the residential cluster homes should be installed under the basement due to a lack of site area. There are pressure differences between the SCWs installed under ground surface and basement. It is needed to develop the technology or devices to prevent overflow caused by pressure difference among the SCWs. In addition, heat balance algorithm between SCWs should be adopted to maximize the system efficiency. A heat pump having heating, cooling, hot water, heating-hot water, and cooling-hot water modes should be developed for adopting an individual air-conditioning system to the residential cluster homes.

Solumycin : A water-soluble antifungal antibiotic from Streptomyces sp. LAM-593 (Streptomyces sp. LAM-593이 생산하는 수용성 항진균성 항생물질)

  • Yi, Dong-Heui;Park, Seung-Lim;Kwon, Tae-Jong;Chung, Ho-Kwon
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.180-186
    • /
    • 1991
  • A water soluble antifungal antibiotic, Solumycin, was separated from the culture broth of Streptomyces sp. LAM-593, isolated from soil, by butanol extraction, alumina-, 1st and 2nd Sephadex LH-20 column chromatography. The substance was pale yellow crystal which gave a single spot at Rf value 0.24 with ethanol-ammonia water-water (8:1:1), 0.46 with butanol-ethanol-water (5:1:4), 0.84 with 50% methanol on silica gel TLC. It was dissolved well in water, methanol and acidic aq. butanol but not in ethanol, acetone, ethyl acetate, chloroform. acetic acid etc., and gave positive Fehling and Molish reaction. The UV spectrum in methanol showed absorption at 342, 361, 380, and 404 nm. The antibiotic was active against fungi such as Candide, Cryptococcus, Saccharomyces, Trichophyton and Trichosporon, but not to bacteria such as Bacillus, Escherichia and Staphylococcus.

  • PDF

Removal of Nitrate in River Water by Microorganisms in Saturated-Zone Soil: Laboratory-Scale Column Test (포화층 토양미생물에 의한 하천수의 nitrate 제거: 실험실규모 컬럼 실험)

  • Park, Jungyong;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • Aquifer recharge and recovery is a technology used to ensure a stable supply of clean water. During the process, river water is injected into a soil aquifer and stored. The stored water is then recovered and used to produce drinking water. It is important to understand quality improvement of the injected water while it is stored in the aquifer. In the present study, a lab-scale column reactor containing saturated-zone soil was employed to mimic an aquifer. The reactor was used to investigate microbial removal of nitrate that is a major inorganic contaminant detected in the Nakdong River. The reactor was introduced with river water that contained nitrate at concentrations (5.07, 6.81, 8.27, and 11.07 mg $NO_3{^-}/l$) detected downstream of the Nakdong River in the past 2 years. The nitrate concentrations decreased during the introduced water is retained in the reactor. Effluent from the reactor contained 1.49 mg $NO_3{^-}/l$ or less and had an average pH of 7.98 regardless of the nitrate concentrations of the influent. However abiotic control reactor showed similar nitrate-concentrations in its influent and effluent. Considering the result of abiotic control, the decreased nitrate concentration observed in the test column suggested that microorganisms in saturated-zone soil removed nitrate in the river water introduced into the reactor. Results of this study will be used to better understand microbial improvement of water quality in aquifer recharge and recovery technology.