• Title/Summary/Keyword: Water Circulation Facilities

Search Result 70, Processing Time 0.031 seconds

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Evaluation of Offshore Water Quality by Bioassay Using the Gametes and Embryos of Sea Urchins (성게 알을 이용한 생물검정에 의한 연안해수 수질평가에 관한 연구)

  • Yu, Chun-Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.170-174
    • /
    • 1998
  • The water quality of offshore waters around the Korean coast was evaluated by bioassay using gametes, embryoss and early development systems of a sea urchin species Hemicentrotus pulcherrimus. The results show that despite the inflows of several river systems, the west coast maintain the grade II water. This is thought to be due to the decrease in pollutant input resulting from the purification of inflow rivers (e.g., the control of waste water discharge and the construction of sewage treatment facilities), and the dilution of pollutants by a strong tidal mixing with a large difference between the ebb and flood tides. However, Asan, Hampyong and Chonsu bays, where circulations of water are relatively poor, and the Kunsan and Mokpo harbors which are influenced by pollutants from neighboring cities have shown the grade III water. The south coast has maintain the grade II or III because developments of sea urchins were moderately or strongly inhibited. Also, Kangjin, Duekryang, Kwangyang, Masan, and Jinhae bays where water circulations are relatively poor, show the grade III water, with strong inhibitions of the early development of sea urchins. The east coast has maintained the grade I and II due to monotonous coastlines and smooth circulation of sea water. However, Chongcho Lake shows the worst water quality due to the breakwater which is constructed to maintain port functions.

  • PDF

Improvement and application of SWMM-ING for carbon reduction in green infrastructure (그린인프라시설의 탄소저감을 위한 SWMM-ING 개선 및 적용성 평가)

  • Young Jun Lee;Chaeyoung Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.335-345
    • /
    • 2023
  • In Korea, as part of the Green New Deal project toward a carbon-neutral society, it is necessary to build a climate-resilient urban environment to green the city, space, and living infrastructure. To this end, SWMM-ING was improved and the model was modified to analyze the carbon reduction effect. In addition, I plan to select target watersheds where urbanization is rapidly progressing and evaluate runoff, non-point pollution, and carbon reduction effects to conduct cost estimation and optimal design review for domestic rainwater circulation green infrastructure. In this study, green infrastructure facilities were selected using SWMM-ING. Various scenarios were presented considering the surface area and annual cost of each green infrastructure facility, and The results show that the scenario derived through the APL2 method was selected as the optimal scenario. In this optimal scenario, a total facility area of 190,517.5 m2 was applied to 7 out of 30 subwatersheds to achieve the target reduction. The target reduction amount was calculated a 23.50 % reduction in runoff and a 26.99 % reduction in pollutant load. Additionally, the annual carbon absorption was analyzed and found to be 385,521 kg/year. I aim to achieve additional carbon reduction effects by achieving the goal of reducing runoff and non-point pollution sources and analyzing annual carbon absorption. Moreover, considering the scale-up of these interventions across the basin, it is believed that an objective assessment of economic viability can be conducted.

Healing Landscape Design for Hospital Outdoor Space - A Case of the Kyeongsang National University Hospital in Changwon - (치유경관의 개념을 적용한 병원 옥외공간 조경설계 - 창원 경상대학교 병원을 사례로 -)

  • Min, Byoung-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.82-92
    • /
    • 2013
  • This paper presents a landscape design proposal for the Kyeongsang National University Hospital in Changwon, Kyeongsangnam-do. The site is located at 555 Samjeongja-dong, Seongsan-gu, Changwon, Kyeongsangnam-do, and its area is approximately $79,743.1m^2$. The goal of the design was to create a landscape that helps the patients' recovery and public well-being as well as respects the surrounding environment. In order to achieve this goal, three design subjects were considered: maximizing the healing functions of the landscape, promoting ecologically regenerative landscape, and increasing the aesthetic value of the landscape based on the local context. For the healing aspect, first, therapeutic plants were carefully selected and various healing programs were introduced to the open space area such as the sensory garden, meditative space, the medicinal herb garden, outdoor acupressure treatment facilities, remedial playground etc. In addition, as the importance of patient's privacy is emphasized in research, the space and circulation patterns were divided according to the characteristics of the users. For ecological consideration, the design proposed to preserve and extend the existing ridgeline with pine forest, and recover the natural water system and recycle the water for the landscape management. For the aesthetic experience of the people, in contrast to the surrounding evergreen forest, diverse deciduous and flowering plants were introduced to arouse a sense of the season, and fruit bearing trees for wildlife to create a specific mood of being in nature so that people can listen to the songs of the birds and watch squirrels play etc. In addition, all the spaces and facilities were designed and placed according to universal design principles so that there would be no barrier for the patients to use them. Also, a sustainable management scheme was suggested to maintain the landscape in ecological and economical ways.

A Study on Conservation and Management of the Joseon Royal Tomb's System - Focused on Joseon Royal Tombs Under the Eastern District Management Office - (조선왕릉의 능제보존관리에 관한 연구 - 동부지구관리소 산하 조선왕릉을 중심으로 -)

  • Choi, Jong-Hee;Lee, Chang-Hwan;Hwang, Kyu-Man;Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.75-87
    • /
    • 2018
  • The purpose of this study is to investigate conservation and management methods of the Joseon Royal Tombs under the Eastern District Management Office. Through the literature survey, we understood the process of change of Joseon royal tombs, and through field surveys and interviews, we understood the status of the interior and the surrounding area. In this process, topography, land use and flow of human traffic, architecture and stone objects, water system, historical forests, and facilities were set as the main evaluation indicators. Urbanization has damaged the original terrains of Royal Tombs as national roads, buildings and facilities have constructed in the inner and outer area of Joseon Royal Tombs. Construction of underground passage, land purchase, relocation and demolition of the buildings are required for the conservation of the Royal Tombs area, and then it is necessary to recover the original terrain. In the case of land use and pathways, there are many disconnection of the original ritual circulation, they should be maintained to remind the sacred atmosphere of the royal tomb. And It is necessary to collect accurate information on the lost buildings and stoneworks through literature survey and excavation investigation, and that investigations should be lead to the exposure or restoration of the ruins. Historical forests require periodic and ongoing monitoring and management, and it is necessary to establish new entrance area and appropriate facilities following the long-Term conservation and management plan. These plans should be classified into short, medium and long-Term projects according to urgency and securing financial resources with a long perspective to implement continuous and systematic projects.

Consideration on the Operation of water level management and Environmental Change Associated with Inner Dike Constructions in Saemangeum Reservoir (새만금호 방수제 공사에 따른 관리수위 운영과 환경변화에 관한 고찰)

  • Choi, Jung-Hoon;Oh, Chan-Sung;Cho, Young-Kweon;Ahn, Chi-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • A Saemangeum Development Project, which is a national project in South Korea, has started with the objective of developing the reclaimed area mainly agricultural land use since the mid'80s. To develop a model of the global eco-reclamation, constructions of the eco-friendly counter facilities such as sluice gates and inner dikes, as well as environmental preservation measures for an estuary reservoir, have been carried out. However, reasonable measures of the water quality management for the Saemangeum area are required. Thus, the purpose of this study is to rigorously analyze and quantitatively evaluate the environmental problems due to the water level management associated with inner dike constructions. To achieve these objectives, the affecting factors on determination of water level management are described and a series of calibrated transient-state numerical simulations was performed to demonstrate the salinity distribution difference in the estuary before and after the construction of inner dikes. The overall salinity reduced about 2~5 psu, and the seawater intrusion was weakened by a well-regulated waterway after construction of the inner dikes compared to before construction of them.

Policy Plans for the Maintenance of Public Security of Living During the War (전시 국민생활안정 유지방안)

  • Kil, Byung-Ok
    • Journal of National Security and Military Science
    • /
    • s.5
    • /
    • pp.131-172
    • /
    • 2007
  • Government duties in the cases of crisis are aimed at supporting efficient military operations in the fields of non-military affairs and resource mobilization, maintenance of government functions, and search for the public security of living during the war. In crisis, the government must change its functions into the total-war system with all resources available for the efficient performance of military operations, war economy, public safety and security as well as government continuance. The main contents of "Chung-Mu Plan" include the alternative measures to control the circulation of life necessities, emergency electricity, water and gas; recover public facilities from the disaster; and accommodate the wounded and refugees. Governments have practiced Ul-chi and ChungMoo exercises to improve government's management capabilities and master standard operating procedures including systematic distribution plans in the national and local level. However, such plans have not yet sufficient enough for the maintenance of public security of living. In addition to the conceptual ambiguity, major problems are the inappropriate system of the war economy, legal institutions, and administrative SOPs for the efficient maintenance of it. Thus, for the betterment of national crisis management system, the government should have the manual stated from every step and level dealing with crisis to the legal institutions. It is important to empower the National Emergency Planning Commission for the policy consistency and efficient/effective implementation. The comprehensive plans must have an integrated cooperative system of the central/local governments, military and civil society with actual practices and exercises for the maintenance of the public security of living.

  • PDF

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;JEONG, Tae-Hwan;Kim, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: By applying an ultrasonic mechanical device to the liquid fertilizer storage in the pig dropping treatment plant, the initial odor of the odor source is reduced, and the air dilution drainage of the complex odor is fundamentally recognized to facilitate odor treatment on the mechanical and chemical biological treatment devices at the rear. Research design, data and methodology: The odor concentration on the site boundary was measured to confirm the state of reduction. In order to prevent the spread of odor from the collection of the pig dropping treatment plant, it was measured by installing an ultrasonic generator inside the installation wall after installing the sealing wall. Results: The average value of the March and April measurement data remained close to neutral at 8.2 after 8.6 treatment before pH treatment, decreased 97.3% from 462 mg/L before SS treatment to 10.5 mg/L after treatment, and the composite odor was reduced by 85% from 20 to 3 before treatment. It was confirmed that ammonia (NH3) was reduced by 99% from 5.8 ppm to 0.09 ppm, and general bacteria were also reduced by 99% from 3,200 CFU/mL to 57 CFU/mL Conclusion: Applying the ultrasonic air ejector hybrid system and zigzag air complex module development product to resource circulation centers or sewage treatment facilities is thought to reduce inconvenience to residents due to odors caused.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Effective Costal Environmental Management by Conjugation of Modeling of Bio-Purification and Total Allowable Pollutant Loads in Masan Bay (생물정화기작과 총허용오염부하량을 연계한 마산만의 효율적 해양환경 개선방안)

  • Eom, Ki-Hyuk;Kim, Gui-Young;Lee, Won-Chan;Lee, Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.38-46
    • /
    • 2012
  • This study carried out current status, characteristics, and problems of coastal environment management on semi-enclosed Masan Bay in Korea and suggests cost-effective and eco-friendly water quality management policy. The pollutants from terrestrial sources into the Bay have apparently environmental pollution problems, such as eutrophication, red tide, and hypoxia. The carrying capacity of the Bay is estimated by hydrodynamic model and ecosystem model, material circulation including bivalve in ecosystem is analyzed by the growth model of bivalve. The resulting reduction in the input load was found to be 50~90%, which is unrealistic. When the efficiency of water quality improvement through bivalve farming was assessed based on the autochthonous COD, 30.7% of the total COD was allochthonous COD and 69.3% was autochthonous COD. The overall autochthonous COD reduction rate by bivalve aquaculture farm was found to be about 6.7%. This study indicate that bivalve farming is about 31% less expensive than advanced treatment facilities that remove both nitrogen and phosphorous.