• Title/Summary/Keyword: Water Chiller

Search Result 120, Processing Time 0.025 seconds

Study on Stratification according to Diffuser Shape of the Thermal Storage Tank in Integrated Energy (집단에너지 공급 축열조의 디퓨져 형태별 성층화 연구)

  • Jang, Cheol-Yong;Cho, Soo;Choi, Seok-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.300-303
    • /
    • 2008
  • The stratification effect was investigated with four different types of diffuser shape in a thermal storage tank. For this study, experimental facility was constructed, which was composed of experimental thermal storage tank, hot and cold water storage tanks, boiler, chiller, data acquisition system, etc.. Visualization and lab scale experimental result showed that radial curved type diffuser was the highest degree of stratification among the four diffuser shapes.

  • PDF

Numerical Analysis of Vertical Plate Absorber for Optimal Design

  • Yoon, Jung-In;Moon, Choon-Geun;Phan, Thanh-Tong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.252-262
    • /
    • 2004
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. which was considered to the change of refrigerant vapor pressure along the plate width direction. was developed to evaluate the compactness of plate absorber and supply basis data for optimal design of plate absorber. The effects of plate interval as well as the effect of capacity for one piece of plate absorber on plate absorber size such as plate height. plate heating area and plate absorber volume have been investigated. It is confirmed that there is exist an optimal plate interval minimizing plate absorber volume. And the smaller capacity for one piece of plate absorber. the smaller plate absorber volume is obtained.

Development and Application of an Economic Assessment Program of Cogeneration Systems (열병합시스템 경제성 평가 프로그램의 개발 및 적용에 관한 연구)

  • Park, Chasik;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1547-1554
    • /
    • 1998
  • The object of this study was to develop an economic assessment program for the optimal design of the cogeneration systems composed of combining engine, generator, waste heat recovery exchanger, absorption chiller, and boiler, etc. The energy demand categorized by electric power, heating, cooling and water supply was determined by statistical data of the existing cogeneration systems. An economic assessment was performed by comparing the total cost of cogeneration system with that of non-cogeneration system. The total cost was evaluated by adding initial investment to operational cost considering efficiency of equipment, cost of equipment, fuel and electricity. To confirm the validity of the developed program, a hotel building with an area of $127,960m^2$ was selected, and the simulated results were compared with the measured data. The difference between the simulated and the measured values for the selected hotel building was approximately 12% for annual electric consumption.

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

Dynamic simulation of the ice storage cooling system (빙축열 냉방 시스템의 동적 시뮬레이션)

  • 한도영;이준호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.815-823
    • /
    • 1999
  • A dynamic simulation program may be used for the development of effective control algorithms for the ice storage cooling system. Simplified effective dynamic models for an ice-on-coil type storage tank, a screw chiller, a water-to-air heat exchanger, three way valves, pipes, pumps, temperature sensors, and controllers were developed. And a dynamic simulation program for the ice storage cooling system was developed by using these dynamic models. Control algorithms for the full storage system were also selected and analyzed in order to show the effectiveness of these models. From the simulation results, it may be concluded that the simulation program developed in this study can be effectively used for the development of improved control algorithms for the ice storage cooling system.

  • PDF

Influence of surfactant on heat transfer of air-cooled vertical absorber (공냉식 수직 흡수기의 열전달에 미치는 계면활성제의 영향)

  • 윤정인;권오경;문춘근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.740-748
    • /
    • 1999
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare inner surface, groove inner surface, corrugated inner surface and spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of film Reynolds number in the range of 20~200. Experiments were tarried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

  • PDF

Formation of Acid Mine Drainage and Pollution of Geological Environment Accompanying the Sulfidation Zone of Nonmetallic Deposits: Reaction Path Modeling on the Formation of AMD of Tongnae Pyrophyllite Mine (비금속광상의 황화광염대에 수반되는 산성광산배수의 형성과 지질환경의 오염 : 동래납석광산 산성광산배수의 형성에 관한 반응경로 모델링)

  • 박맹언;성규열;고용전
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.405-415
    • /
    • 2000
  • This study was carried out to understand the formation of acid mine drainage (AMD) by pyrophyllite (so-called Napseok)-rainwater interaction (weathering), dispersion patterns of heavy metals, and patterns of mixing with non-polluted water in the Tongnae pyrophyllite mine. Based on the mass balance and reaction path modeling, using both the geochemistry of water and occurrence of the secondary minerals (weathering products), the geochemical evolution of AMD was simulated by computer code of SOLVEQ and CHILLER. It shows that the pH of stream water is from 6.2 to 7.3 upstream of the Tongnae mine. Close to the mine, the pH decreases to 2. Despite being diluted with non-polluted tributaries, the acidity of mine drainage water maintains as far as downstream. The results of modeling of water-rock interaction show that the activity of hydrogen ion increases (pH decreases), the goncentration of ${HCO_3}^-$ decreases associated with increasing $H^+$ activity, as the reaction is processing. The concentration of ${SO_4}^{2-}$first increases minutely, but later increases rapidly as pH drops below 4.3. The concentrations of cations and heavy metals are controlled by the dissolution of reactants and re-dissolution of derived species (weathering products) according to the pH. The continuous adding of reactive minerals, namely the progressively larger degrees of water-rock interaction, causes the formation of secondary minerals in the following sequence; goethite, then Mn-oxides, then boehmite, then kaolinite, then Ca-nontronite, then Mgnontronite, and finally chalcedony. The results of reaction path modeling agree well with the field data, and offer useful information on the geochemical evolution of AMD. The results of reaction path modeling on the formation of AMD offer useful information for the estimation and the appraisal of pollution caused by water-rock interaction as geological environments. And also, the ones can be used as data for the choice of appropriate remediation technique for AMD.

  • PDF

An Experimental Study on Beat and Mass Transfer Characteristics of Helical Absorber (헬리컬 흡수기의 열ㆍ물질전달 특성에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 2004
  • In this study, heat and mass transfer characteristics of five components solution (LiBr+Lil+LiNO$_3$+LiCl+$H_2O$) which could be substituted for commonly used LiBr solution are tested using a helical absorber. The arrangement of helical-typed heat exchangers allows to make the system more compact as compared to conventional one. The effects of experimental parameters, such as the solution flow rate, cooling water, solution temperature, solution concentration and surfactant have been investigated in view of the heat and mass transfer. The results of the experiment of heat and mass transfer performance show that five components solution should have 2% higher concentration fur equal absorption capacity of LiBr solution. But considering that five components solution have higher solubility than LiBr solution about 4% high concentration, five components solution could be applied to a small sized water cooled or air cooled absorption chiller/heater. The increase of heat and mass transfer coefficient by surfactant addition is about 25∼30% and 23∼40% respectively.

An Analytical Study on the Optimal Set-point of the Hybrid Plant (복합열원설비 운전온도 최적 설정에 관한 해석적 연구)

  • Jeon, Jong-Ug;Lee, Sun-Il;Lee, Tae-Won;Kim, Yong-Ki;Hong, Dae-Hie;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

$CO_2$ Removal Process Case Studies and Plant Performance Analysis for 300MW IGCC Power Plant (300MW 급 IGCC Power Plant $CO_2$ 제거공정의 Case Studies 및 Plant 성능 영향 분석)

  • Jeon, Jinhee;Yoo, Jeongseok;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.71.2-71.2
    • /
    • 2011
  • 300MW 급 태안 IGCC 가스화 플랜트 및 기존 발전소에 CCS 를 설치할 경우에 대해 기술 타당성 검증을 목적으로 CCS 모델링을 수행하였다. CCS Case Studies 는 플랜트 운전부하에 따른 $CO_2$ 제거율, $H_2S$ 제거율, 소모동력 범위 등 플랜트 성능을 예측할 수 있다. Case Studies 결과를 활용하여 설계된 CCS 설비 용량이 운전범위에 적합한지를 판단할 수 있고 과잉 설계되었을 경우 플랜트 건설비를 절감할 수 있다. IGCC 가스화 플랜트에서 생산되는 합성가스의 $CO_2$ 분압, 목표 $CO_2$ 제거율, 경제성을 기준으로 적합한 CCS 공정을 판단한 결과 Selexol 공정이 선정되었다. Selexol 공정은 고압, 고농도의 산성가스 제거에 적합하며 다른 물리적 용매인 Rectisol 공정에 비해 건설비용이 경제적이고 화학 흡수제인 아민과 비교하여 운전 온도 범위가 넓다. CO, $H_2O$$CO_2$, $H_2$ 로 전환하는 Water Gas Shift Reaction (WGSR) 공정은 Co/Mo 촉매 반응기로 구성되었고 Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum 로 구성되었다. WGSR+Selexol 모델링은 Wet Scrubber 후단의 합성가스 (40.5 bar, $136{\sim}139^{\circ}C$) 를 대상으로 하였다. WGSR+Selexol 공정 운전 조건 변화 [Process Design Case(PDC), Equipment Design Case(EDC), Turndown Design Case(TDC)] 에 따른 플랜트 모델링 결과를 비교분석 하였다. 주요 분석 내용은 WGSR 설비에서의 CO 의 $CO_2$ 전환 효율, Selexol 설비에서 $CO_2$ 제거 효율, $H_2S$ 제거 효율이다. 모델링 결과 WGSR 설비에서의 CO 의 $CO_2$ 로의 전환율 99.1% 이상, Selexol 설비에서 $CO_2$ 제거율은 91.6% 이상, $H_2S$ 제거율 100%이었다. CCS 설비 설치에 따른 플랜트 성능 영향을 분석하기 위해서 CCS 설비의 Chiller, Compressor, Pump 소비동력을 계산하였다. 모델링 결과 Chiller 는 2.6~8.5 MWth, Compressor 는 3.0~9.6 MWe, Pump 는 1.4~3.0 MWe 범위 이었다. 플랜트 로드가 50%인 TDC 소모동력은 플랜트 로드가 100%인 PDC 소모동력의 절반 수준이었다. 합성가스를 WGS+Selexol 공정을 통해 수소가스로 전환시키면 가스터빈 연료가스의 Lower Heating Value (LHV) 값이 평균 11.5% 감소하였다.

  • PDF