• Title/Summary/Keyword: Wastewater flowrate

Search Result 62, Processing Time 0.024 seconds

Unit Mass Estimation and Analysis from Textile Spinning/Weaving Manufacturing Facility Nearby Nakdong River Basin (낙동강 수계에서 제사방적제조 업체에 대한 공정별 원단위산정 및 분석)

  • Lee, Hongshin;Son, Gontae;Gu, Jungeun;Konboonraksa T.;Lee, Hongtae;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.541-550
    • /
    • 2008
  • In this investigative study, the unit mass discharge for the major water quality parameters such as flowrate, SS, BOD, CODmn, CODcr, TN, TP from textile spinning/weaving industry nearby Nakdong river basin was estimated. To represent the respective industries, three companies from hundreds of textile spinning/weaving industries located in Nakdong river basin was carefully selected based on its manufacturing goods, flowrate and location for the estimation of unit mass discharge based on unit operation and process. There was a drastic decrease of unit mass discharge estimation between influents and effluents of water quality parameters, which represents the removal capacity of wastewater treatment plant. With the advent of new regulation on the imposed payment proportional to the total amount of pollutants discharge into the water body, the concept of cleaner production technology should be employed in the unit operation/process in wastewater treatment plant as well as textile manufacturing procedure to minimize the levy on the pollutants discharge. Unit mass discharge estimations of unit process (estimated in this study) in major water quality parameters (SS, BOD, COD, TN and TP) based on land were similar to those of composite process (estimated by National Institute of Environmental Research). But the unit mass discharge estimations of unit process in BOD and CODmn based on total sale were much higher than those of composite one while in SS, TN and TP similar to each other. For the detailed estimation of the imposed payment, unit mass estimation based on unit process should be further emphasized.

Change of Sludge Denitrification and Nitrification Rate according to the Operating Conditions in Advanced Wastewater Treatment Processes (하수고도처리공법의 유입하수량 변화에 따른 슬러지 질산화/탈질속도 변화)

  • Lee, Myoung-Eun;Oh, Jeongik;Park, No-Suk;Ko, Dae-Gon;Jang, Haenam;Ahn, Yongtae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • The purpose of this study is to investigate the changes of sludge characteristics according to the changes of influent sewage flowrate in the advanced wastewater treatment processes including MBR, SBR, and $A_2O$. The ratio of the actual sewage flowrate to the design flowrate is decreased from 100% to 70, 40%, and 10%, and the specific denitrification rate and ammonia oxidation (nitrification) rate was measured. The specific nitrification rate of the sludge collected from the aeration tank of each process was measured at a similar value ($0.10gNH_4/gMLVSS/day$) in all three process under the condition of 100% of sewage flowrate. It has tended to decrease significantly as the sewage flowrate decreased from 70% to 40%. The specific denitrification rate was also decreased by ~50% as the sewage flowrate decreased. However, considering the total nitrogen concentration in the influent and the microbial concentration in the reactor, the changes in kinetic parameter did not affect overall nitrogen removal. Therefore, it can be concluded that stable nitrogen removal will be possible under low influent flowrate condition if the MLVSS concentration is kept high.

Development of Dissolved Air Flotation Technology from 1st Generation to the Newest or 3rd One (Very Thick Microbubble Bed) with High Flowrates DAF in Turbulent Flow Conditions (차세대 고효율 용존공기 부상공정(High Rate DAF)의 개발)

  • Kiuru, H.J.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.228-234
    • /
    • 2004
  • Dissolved air flotation (DAF), in which suspended solids are removed from water by means of micro-size air bubbles raising slowly up in water and lifting solids from water (smaller than those) attached onto the micro-bubbles as well as those (larger than solids) being attached on these, have been used in water and wastewater since 1920s. The dissolved air flotation technology was originally based on the laminar flow conditions prevailing in water to be treated, but the latest development in that technology has led now to a situation, in which the flow conditions may also be turbulent ones in the modem dissolved air flotation units. Despite of that, the flotation phenomenon used in this unit operation for removal suspended solids from water or wastewater is still the same.

Performance Evaluation of Advanced Municipal Wastewater Tretment by Phased Isolation Intrachannel Clarifier Ditch (침전지내장형 상분리 산화구공정에 의한 하수 고도처리특성 평가)

  • Hong, Ki-Ho;Chang, Duk;Han, Sang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.563-570
    • /
    • 2004
  • Phased isolation intrachannel clarifier ditch process developed in this study is an enhanced biological nutrient removal process employing two ditches with intrachannel clarifiers. Bench-scale phased isolation ditch process was used to evaluate the system performance on municipal wastewater and detailed assessment of internal behavior in a ditch and each reactions. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31 days, and cycle times of 4hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 73~78%, and 65~90%, respectively. The internal behavior were well matched on each reactions such as nitrification, denitrification, and phosphorus release and uptake. As the SRT became longer, TN removal increased gradually, whereas TP removal decreased contrarily. However, the system was capable of producing an effluent TP concentration 1mg/L or less even at longer SRTs except the case of solids discharge by malfunction of intra-clarifier occurred by its geometrical limit. The system performance slightly decreased by hydraulic shock loading(increasing of influent flowrate and decreasing of system HRT). However, the higher system performance could be achieved again after four cycles. Thus, the system reliability could be successfully achieved short-term hydraulic shock loading that occurred in medium- and small-sized wastewater treatment plants suffering fluctuation of influent quality and flowrate during wet season.

Performance Anaysis of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant (하수처리장 방류수를 이용한 소수력발전 성능분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.494-497
    • /
    • 2012
  • A methodology to predict the output performance of small hydro power using treated effluent in wastewater treatment plant has been studied. Existing plant located Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in wastewater treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed.

  • PDF

A Quantitative/Qualitative Study of Infiltration/Inflow for Order Decision of Sewer pipe Maintenance (하수관거보수 순위결정을 위한 침입수/유입수량에 대한 정량/정성 분석의 실행 연구)

  • Park, Myung-Gyun;Kim, Dae-Sung;Ahn, Won-Sik;Oh, Jeong-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • This study was carried out to obtain quantities of infiltration, inflow and exfiltration on sewer pipes of three areas at a small city. From the results, the most investigated sewer pipes should be infiltrated by underground water and undetermined water. Flowrate commonly showed two peak at 6 to 8 a.m. and 6 to 9 p.m. and which may be influenced by the sewer flowrate with washing or bathing time. BOD/TN ratio of below 4.0 were inferior as compared with proper criteria 5.1. Infiltration/inflow rates of three areas were 21.7% and $0.08m^3/km$ of A, 12.4% and $0.015m^3/km$ of B, 22.4% and $0.021m^3/km$ of C, respectively. This indicates that infiltration/inflow rate of A was obviously greater than that of B and C. Also, these results show that we can conduct sewer maintenance in good order as A, C and B zone.

Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods (기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석)

  • Lee, Jae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

A pressure based flow velocity estimation technique using inverse impedance for simple pressurized pipeline systems (피압 단순 관로 체제에서의 인버스 임피던스를 이용한 수압기반 유속추정기술)

  • Lee, Jeongseop;Ko, Dongwon;Choi, Dooyong;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.219-228
    • /
    • 2022
  • In this study, we propose a flow velocity evaluation scheme based on pressure measurement in pressurized pipeline systems. Conservation of mass and momentum equations can be decomposed into mean and perturbation of pressure head and flowrate, which provide the pressure head and flowrate relationship between upstream and donwstream point in pressurized pipeline system. The inverse impedance formulations were derived to address measured pressure at downstream to evaluation of flow velocity or pressure at any point of system. The convolution of response function to pressure head in downstream valve provides the flow velocity response in any point of the simple pipeline system. Simulation comparison between traditional method of characteristics and the proposed method provide good agreements between two distinct approaches.

Study on the Characteristics of Nitrification and Denitrification using Attached Microorganism (부착성 미생물을 이용한 질산화 및 탈질특성에 관한 연구)

  • Kwon, Moonsun;Lee, Euisin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.19-25
    • /
    • 1994
  • In this research, characteristics of nitrification and denitrification using the microorganism attached on sponge and plates were examined. The denitrification and nitrification performance were investigated under the anaerobic and aerobic condition for about 2 months. Because the basins of denitrification and nitrification were connected in series, wastewater was flowed from denitrification basin to nitrification one. The 90% of influent flowrate was returned from nitrification basin to denitrification one. Most of organic material was removed in nitrification basin, wherease the only exact amount of organics required in denitrification process was removed in denitrification one. This experiment resulted in that heterotrophic bacteria existing in aerobic basin governed the removal efficiency of organic compounds. In case the influent BOD concentration into nitrification basin was 80mg/l, it did not affect to accumulation of nitrifying bacteria, the balance of heterotrophic bacteria was proved to be an important factor in nitrification/denitrification method such as anaerobic and aerobic cycling type.

  • PDF

Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment (고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가)

  • Kang, Bum-Hee;Lim, Kyeong-Ho;Lee, Sang-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.