• Title/Summary/Keyword: Wastewater Treatment Plant

Search Result 949, Processing Time 0.025 seconds

Plant Growth Promotion by Purple Nonsulfur Rhodopseudomonas faecalis Strains (자색비유황세균 Rhodopseudomonas faecalis의 식물생장촉진능)

  • Lee, Eun-Seon;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.157-161
    • /
    • 2010
  • Photosynthetic purple nonsulfur bacterial strains were isolated from the sediments collected from rice paddy fields and sludges of wastewater treatment plant, and their plant growth promoting capabilities were examined. Most well known phytohormones, auxin such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and 5'-aminolevulinic acid (ALA) were detected by HPLC in the culture broth of these isolates. Among the isolated bacteria, Rhodopseudomonas faecalis D15 showed the highest production rate of 769.8 ${\mu}g$/mg protein of IAA, 1323 ${\mu}g$/mg protein of IBA and 7.4 mM/mg protein of ALA in the modified Biebl and Pfennig's medium. R. faecalis C9 showed the highest production rate of 20.82 ${\mu}g$/mg protein of gibberellin. In consequence, the root length and dry weight of the germinated tomato seedling treated with R. faecalis isolates were longer and heavier than those of uninoculated control after 15 days of incubation in the soil. Especially, the dry weight of germinated tomato seedling increased by 119.4% in C9-treated samples after 15 days. These purple nonsulfur bacteria may be utilized as environment-friendly biofertilizer in the agriculture.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Analysis and Prediction of Sewage Components of Urban Wastewater Treatment Plant Using Neural Network (대도시 하수종말처리장 유입 하수의 성상 평가와 인공신경망을 이용한 구성성분 농도 예측)

  • Jeong, Hyeong-Seok;Lee, Sang-Hyung;Shin, Hang-Sik;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.308-315
    • /
    • 2006
  • Since sewage characteristics are the most important factors that can affect the biological reactions in wastewater treatment plants, a detailed understanding on the characteristics and on-line measurement techniques of the influent sewage would play an important role in determining the appropriate control strategies. In this study, samples were taken at two hour intervals during 51 days from $1^{st}$ October to $21^{st}$ November 2005 from the influent gate of sewage treatment plant. Then the characteristics of sewage were investigated. It was found that the daily values of flow rate and concentrations of sewage components showed a defined profile. The highest and lowest peak values were observed during $11:00{\sim}13:00$ hours and $05:00{\sim}07:00$ hours, respectively. Also, it was shown that the concentrations of sewage components were strongly correlated with the absorbance measured at 300 nm of UV. Therefore, the objective of the paper is to develop on-line estimation technique of the concentration of each component in the sewage using accumulated profiles of sewage, absorbance, and flow rate which can be measured in real time. As a first step, regression analysis was performed using the absorbance and component concentration data. Then a neural network trained with the input of influent flow rate, absorbance, and inflow duration was used. Both methods showed remarkable accuracy in predicting the resulting concentrations of the individual components of the sewage. In case of using the neural network, the predicted value md of the measurement were 19.3 and 14.4 for TSS, 26.7 and 25.1 for TCOD, 5.4 and 4.1 for TN, and for TP, 0.45 to 0.39, respectively.

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal (총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석)

  • Park, Hye-Young;Park, Sang-Min;Lee, Ki-Cheol;Kwon, Oh-Sang;Yu, Soon-Ju;Kim, Shin-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.212-221
    • /
    • 2011
  • Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.

The Effects of Pollutants into Sub-basin on the Water Quality and Loading of Receiving Streams (하천 수질 및 부하량에 미치는 유역 내 오염원의 영향)

  • Han, Mideok;Son, Jeeyoung;Ryu, Jichul;Ahn, Kihong;Kim, Yongseok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.648-658
    • /
    • 2014
  • We examined the effects of pollutants into sub-basin on the water quality and loading based on data surveyed during January-December 2013 from 13 sites of 5 streams in the Jinwi watershed. We used the contour plot and Kruskal-Wallis rank sum test to analyze seasonal variation of water quality and loading and Pearson correlation analysis to assess the relationships between pollutants and loadings. The significantly higher seasonal variation were SS, TN and TOC as compared to other water quality constituents (P < 0.001). A significant interaction existed between the effects of human population and the effects of discharge of Sewage Treatment Plant (STP) on water quality and loading, especially for the spring and winter seasons. It is necessary to control discharge water of sewage and wastewater from industrial facilities and to make full use of the watershed management system such as TMDLs in operation since 2012 for improvement in stream water quality.

Feasibility of Co-Digestion of Sewage Sludge, Swine Waste, and Food Waste Leachate (하수슬러지, 돈분뇨, 음식물쓰레기 탈리액 병합소화 타당성 평가)

  • Kim, Sang-Hyoun;Ju, Hyun-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • Feasibility of co-digestion was investigated by a series of anaerobic batch experiments using sewage sludge, swine waste, and food waste leachate as substrates. The organic solid wastes were collected from M city, where the daily productions of sewage sludge, swine waste, and food waste leachate were 178 ton/d, 150 ton/d, and 8 ton/d, respectively. Both swine waste and food waste leachate showed superior methane yields, methane productivities, and organic pollutant removal efficiencies compared to sewage sludge. Co-digestion of the total amounts of organic solid wastes would enhance methane production by 5.60 times $(530\;m^{3}\;CH_{4}/d\;{\rightarrow}\;2,968\;m^{3}\;CH_{4}/d)$. However, it also increase the amount of digestate by 1.88 times with 3.79 to 4.92 times higher pollutants (chemical oxygen demands total nitrogen, and total phosphorus) loading rates. Co-digestion of organic solid wastes is a valid strategy to enhance the performance of an anaerobic sludge digester and the energy independence of a wastewater treatment plant. Anyhow,the increment of digestate with higher pollutant loading would need a careful counterplan in the operation of the main stream of the treatment plant.

A Proposal of Sequencing the Combined Processes for Resources Recovery and Nitrogen Removal from Piggery Waste (슬러리형 돈사폐수에서 자원회수와 질소제거를 위한 순차적 결합공정 제안)

  • Hwang, In-Su;Min, Kyung-Sok;Bae, Jin-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The combined ADEPT(Anaerobic Digestion Elutriated Phased Treatment)-SHARON(Single reactor system for High Ammonium Removal Over nitrite)-ANAMMOX(Anaerobic ammonium oxidation) processes were operated for resources recovery and nitrogen removal from slurry-type piggery waste. The ADEPT process operated at an acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by the hydrolysis were 13% and 0.19 $gSCOD_{prod.}/gVS_{feeding}$, respcetively. Also, the acid production rate was 0.80 $gVFAs/gSCOD_{prod}$. In methanogenic reactor, the gas production rate and methane content were 2.8 L/day($0.3m^3CH_4/kgCOD_{removal}@STP$) and 77%, respectively. With these operating condition, the removals of nitrogen and phosphorus were 94.1% as $NH_4-N$(86.5% as TKN) and 87.3% as T-P respectively.

Study on Local Wireless Network Data Structure for Sludge Multimeter (슬러지 멀티미터를 위한 근거리무선네트워크 데이터구조 설계 연구)

  • Jung, Soonho;Kim, Younggi;Lee, Sijin;Lee, Sunghwa;Park, Taejun;Byun, Doogyoon;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.96-100
    • /
    • 2014
  • Recently, the management system of wastewater treatment facility has magnified due to the stringent regulations for the protection of the environment, and a sewage treatment plant efficiency and research of the car development are activated in large facilities or industrial park. however, the existing sewerage disposal system and specific water quality monitoring network reliability for real-time transmission of this building is insufficient. In this paper, we proposed a local wireless network design for sludge multi meter data collection and control for measuring the concentration of the sludge efficiently. Also, the collected data over the local wireless network to transmitted to the central monitoring system and accumulate the data in real time to calculate statistics is possible to monitor the status of the sewage treatment facilities. The proposed system uses a short-range wireless networks of IEEE 802.15.4 and configures an IEEE 802.11 network which can monitor real-time status in central system. Also, we install a sludge multimeter and communication network in sewage treatment facilities and confirm the usefulness of the proposed technique by demonstrating its effectiveness.

Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust (톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석)

  • Oh, Chang-Ho;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.496-523
    • /
    • 2018
  • The objective of this study is to evaluate the economic feasibility of two fast pyrolysis and biooil upgrading (FPBU) plants including feed drying, fast pyrolysis by fluidized-bed, biooil recovery, hydro-processing for biooil upgrading, electricity generation, and wastewater treatment. The two FPBU plants are Case 1 of an FPBU plant with steam methane reforming (SMR) for $H_2$ generation (FPBU-HG, 20% yield), and Case 2 of an FPBU with external $H_2$ supply (FPBUEH, 25% yield). The process flow diagrams (PFDs) for the two plants were constructed, and the mass and energy balances were calculated, using a commercial process simulator (ASPEN Plus). A four-level economic potential approach (4-level EP) was used for techno-economic analysis (TEA) under the assumption of sawdust 100 t//d containing 40% water, 30% equity, capital expenditure equal to the equity, $H_2$ price of $1050/ton, and hydrocarbon yield from dried sawdust equal to 20 and 25 % for Case 1 and 2, respectively. TCI (total capital investment), TPC (total production cost), ASR (annual sales revenue), and MFSP (minimum fuel selling price) of Case 1 were $22.2 million, $3.98 million/yr, $4.64 million/yr, and $1.56/l, respectively. Those of Case 2 were $16.1 million, $5.20 million/yr, $5.55 million/yr, and $1.18/l, respectively. Both ROI (return on investment) and PBP (payback period) of Case 1(FPBU-HG) and Case 2(FPBU-EH) were the almost same. If the plant capacity increases into 1,500 t/d for Case 1 and Case 2, ROI would be improved into 15%/yr.

Nitrogen and Phosphorus Removal Characteristics of a New Biological Nutrient Removal Process with Pre-Denitrification by Pilot Scale and Computer Simulation Program (선단무산소조를 이용한 영양소제거공정(Bio-NET)의 질소·인 제거 특성)

  • Oh, Young-Khee;Oh, Sung-Min;Hwang, Yenug-Sang;Lee, Kung-Soo;Park, No-Yeon;Ko, Kwang-Baik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2000
  • This study is to investigate the performance of a new BNR process using predenitrification scheme focusing on nitrogen removal and the possibility of adapting a computer simulation scheme in BNR process development. By using a pre-denitrification basin, higher $COD/NO_3-N$ ratio could be sustained in this BNR process. The results of the investigation showed a SDNR value of 9.04mg/gMv/hr. In the anoxic tank, the average value of SPRR of 6.25mgP/gMv/hr was observed to be very sensitive to SCOD load of influents. By calibrating internal parameters (stoichiometric and kinetic parameters) of the simulation model, the results of simulation for various BNR processes gave good agreement with observed data. The major adjustment was given with three parameters, maximum specific growth rate of heterotrophic biomass, short chain fatty acid (SCFA) limit, and phosphorous release rate. With the series of simulations on varying operational conditions, the simulation by computer program can be a useful tool for process selection, and design and operation of municipal wastewater treatment plant.

  • PDF