• Title/Summary/Keyword: Wastes characteristics

Search Result 457, Processing Time 0.031 seconds

Generation and Physico-Chemical Characteristics of Municipal Solid Wastes generated in Chunchon for Sanitary Management (춘천시 생활쓰레기의 위생관리를 위한 배출 및 이·화학적 특성)

  • Rim, Jay-Myoung;Kang, Sung-Hwan;Han, Dong-Joon;Kim, Byeoung-Ug
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.37-42
    • /
    • 1997
  • Generation and physico-chemical characteristics of municipal solid wastes are very important for sanitary management. However, that has not been investigated so far especially in chunchon. And so, we tried to examine many things in detail. It was resulted that density was $90{\sim}94kg/m^3$ in school and office zone and $290{\sim}298kg/m^3$ in apartment and market place. The compositional weight fraction was food, 40~54%, paper, 14~18%, vinyl and prastic, 14~20% in house zone and market place and paper, 42~70% in school and office zone. Moisture was estimated to be 54~57% in independent house zone, apartment and market place and 11~23% in school and office zone. And three composition was water content, 44.1%, incineration particle, 11.2%, volatile parts, 44.7% in respectively. That is because of seasonal effects and regional chracteristics. In the results of chemical composition and caloric value analysis, carbon(C) was 80% in vinyl and plastic and oxygen(O) was 54.4% in paper.

  • PDF

Leaching Characteristics of Unregulated Heavy Metals in Specified Wastes (지정폐기물 중 미규제 중금속류의 용출 특성)

  • Jeon, Tae-Wan;Shin, Sun-Kyoung;Lee, Jeong-Ah;Kim, Hyoung-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The objective of this research is to investigate the leaching characteristics of unregulated heavy metals such as Ni, Zn, Ba, Be, Sb, Se, V in specified waste. 108 waste samples which were taken from the representative facilities emitting hazardous substances, were analyzed. The rate of leaching of heavy metal was measured using an official test method. From the results, wastewater treatment sludge and dust contained much Ni, and Zn was detected in all samples. Dust and waste catalyst producted from petroleum-refining process tended to reveal V in high concentration. Ba, Be, Sb, Se showed low concentration, but require additional analyses of waste generated at different industries.

A Study on the Elution Characteristics of Heavy Metals from the Industrial Sludges by the Variation of pH (pH 변화에 따른 산업종류별 오니류의 중금속 용출특성에 관한 연구)

  • 박종환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.14-21
    • /
    • 1994
  • This study was carried out to find out the elution characteristics of 4 kinds of sludges and a dust by the variation of pH. Four kinds of sludges were obtained from the Industrial wastes, and the dust, from the iron-and-steel waste. These samples were analyzed by "Official Method for Waste", and the results were summarized as follows. 1. The amounts of heavy metals The concentrations of Cu were 1,940

  • PDF

Utilization Potential of Industrial waste Landfills as Construction Sites (산업폐기물 매립지의 건설부지로의 활용성)

  • 장연수;조삼덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.69-74
    • /
    • 1992
  • The characteristics of the landfill of coal ash and ironwork wastes are investied by performing the basic geotechnical experiments and groundwater quality analyses in the landfills. The results show that the waste materials themselves have good characteristics that can be used as reclamation materials. However, landfills need either some ground improvement or costly foundation and excavation methods to be used as construction sites, because of the careless management during the period of waste disposal.

  • PDF

Comparison of Biological Characteristics on the Organic Waste-treated Lysimeter Soil by RFLP, PLFA, and CLSU (RFLP, PLFA, CLSU를 이용한 폐기물연용토양의 토양미생물 특성 평가 비교)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Lee, Kang-Hyo;Kwon, Sun-Ik;Kong, Won-sik;Suh, Jang-sun;Sung, Jae-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.415-418
    • /
    • 2008
  • The application of sludge wastes into agricultural fields has been increasing annually in Korea. In particular, sewage sludge application has been widely accepted in decades. Sewage sludge application aid in the recycling of essential nutrients and act as a source of organic matter improving the structure and water-holding properties of the soil. The efficient use of sludge wastes, however, requires an individual assessment of waste products. This study assessed the biological characteristics of organic waste-treated lysimeter soils and develop its indicator to assess the soil health of organic waste-treated lysimeter soils. Several analytical techniques more recently developed such as restriction fragment length polymorphism (RFLP), phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for detailed analyses of soil microbial communities. PLFA and RFLP was, therefore, used in the study to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. PLFA, RFLP and CLSU have been utilized to assess microbial characteristics of the lysimeter soils with four different sludge wastes for eight consecutive years. Each of these methods was analyzed for a different aspect of soil microbial characteristics. The study would disclose those methods yielded highly reproductive results for each soil and allow distinguishing the soils based on the structures of specific geneand PLFA-pools more than CLSU fingerprints. PLFA methods, especially, revealed the same relative similarities of the treated soils based on cluster analysis of the biological characteristics. Pig manure compost-treated soil, however, was only the same relative resemblance among the three methods. These results indicated that PLFA easily assessed the biological soil characterization.

A Basic Study on the Radiological Characteristics and Disposal Methods of NORM Wastes (공정부산물의 방사선적 특성과 처분방안에 관한 기본 연구)

  • Jeong, Jongtae;Baik, Min-Hoon;Park, Chung-Kyun;Park, Tae-Jin;Ko, Nak-Youl;Yoon, Ki Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.217-233
    • /
    • 2014
  • Securing the radiological safety is a prerequisite for the safe management of the naturally occurring radioactive materials (NORM) which cannot be reused. This becomes a crucial focus of our R&D efforts upon the implementation of the Act on Protective Action Guidelines against Radiation in the Natural Environment. To secure the safety, the establishment of technical bases and procedures for securing radiological safety related to the disposal of NORM is required. Thus, it is necessary to analyze the characteristics, to collect the data, to have the radiological safety assessment methodologies and tools, to investigate disposal methods and facilities, and to study the effects of the input data on the safety for the NORM wastes. Here, we assess the environmental impact of the NORM waste disposal with respect to the major domestic and foreign NORM characteristics. The data associated with major industries are collected/analyzed and the status of disposal facilities and methodologies relevant to the NORM wastes is investigated. We also suggest the conceptual design concept of a landfill disposal facility and the management plan with respect to the major NORM wastes characteristics. The radionuclide pathways are identified for the atmospheric transport and leachate release and the environmental impact assessment methodology for the NORM waste disposal is established using a relevant code. The assessment and analysis on the exposure doses and excessive cancer risks for the NORM waste disposal are performed using the characteristics of the representative domestic NORM wastes including flying ash, phosphor gypsum, and redmud. The results show that the exposure dose and the excessive cancer risks are very low to consider any radiation effects. This study will contribute to development in the areas of the regulatory technology for securing radiological safety relevant to NORM waste disposal and to the implementation technology for the Act.

Effects of the Supplementation of Fermented Food Wastes on the Performances of Pigs (발효 남은 음식물의 급여가 비육돈의 생산성에 미치는 영향)

  • Jo Ik-Hwan;Kim Guk-Won;Lee Sung-Hun
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.3
    • /
    • pp.315-332
    • /
    • 2005
  • This study was conducted to assess the nutritional value and the safety of the fermented food wastes (FFW) made by adding lactobacillus spp. and bacillus spp. at the ratio of 3:7, respectively to food wastes collected everywhere, and also to determine effects on the performances, carcass characteristics and economical profitability when FFW was fed to pigs. For swine trial, FFW was formulate to pellet by utilizing different feed ingredients, and its formulated FFW pellet was used in this feeding trial. Treatments were consisted of different ratios (T1: $100+0\%$, T2: $75+25\%$, T3: $50+50\%$, T4: $25+75\%$, T5: $0+100\%$) of FFW pellet to commercial diet. A total of 20 male pigs were allotted to treatments of five groups of four pigs per pen. Experimental period lasted for 4 months. The nutritional composition of FFW was 56.7, 19.5 and $19.5\%$ for moisture, crude protein and ether extract, respectively. Salt content was $0.39\%$. Noxious microorganisms such as salmonella and E. coli were not detected in FFW, and contents of heavy metal and aflatoxin B1 were lower than the standard. Nutritional values of FFW pellet satisfied over $100\%$ of requirements presented in official Korean feeding standard for swine. Feeding trial for pigs showed that feed intakes were significantly (P<0.05) decreased with increasing levels of FFW pellet. T2 treatment was ideal ratio under the consideration of economical value of feeds and body weight gain of pigs. For carcass characteristics, dressing rate ($\%$) was highest in T3, and carcass grades for T2, T3 and T4 treatments were estimated as 'A'. Feed cost for FFW per kg was ${\won}167.95$, which implies $52\%$ of commercial feed cost (${\won}350/kg$). Thus, this result implied the decreased feed cost in the swine farm. Conclusively, the utilization of food wastes as feed source may lead to the reduced environmental pollution and the practice of organic livestock farming. However, our results showed that excessive amount of fermented food wastes supplementation to pigs might give rise to their reduced palatability and delayed growth.

  • PDF

A Study on the Characteristics of Combustion and Manufacturing Process on Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (유기성폐기물 고체연료화를 위한 연소 및 제조과정의 특성연구)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • To investigate the feasibility of refuse derived fuels (RDFs) combined of sewage sludge and combustible wastes such as substitutive fuels instead of a stone coal, several different RDFs made with different mixtures of sewage sludge and combustible wastes were analyzed by various experiments. The combustion characteristics for the RDFs were investigated by analyzing fuel gases, and heating values were also measured by a bomb calorimeter. The fundamental properties such as moisture contents, ratios of combustible materials, amounts of ashes, heavy metals, ratios of each chemical elements and heating values were analyzed in accordance with mixing ratios of wt(%) for researching the characteristics of the RDFs. $RDF_{k-1}$ was made of mixing materials which were dried sewage sludge, food wastes and combustible wastes. $RDF_{k-2}$ was made of mixing materials which were peat-moss, tar and sewage sludge. Combustion experiments were carried out at the optimal conditions which were m=2 under air-fuel condition and $850^{\circ}C$. The retention times in the combustor were set at 5, 10 and 15minutes. 50 g of RDFs was put in the combustor for each experiments. The ranges for heating values of $RDF_{k-1}$ with different mixing ratios were from 6,900 kcal/kg to 8120 kcal/kg. The ranges for heating values of $RDF_{k-2}$ with different mixing ratios were from 4,014 kcal/kg to 8,050 kcal/kg. As a result of this study, the heating values, moisture contents, components of chemical elements and mixing ratios of the materials in RDFs had big effects on the efficiency of the combustion. In $RDF_{k-1}$, the higher amounts of combustible wastes in the mixtures, the higher heating values, concentrations of $C_xH_y$ and amounts of ashes were produced. In $RDF_{k-2}$, the higher tar amounts in the mixtures caused the higher heating values, amounts of ashes, concentrations of CO gas and CxHy.

Physical and Chemical Analysis of Organic Wastes for the Establishment of Total Management System (유기성 폐기물 종합관리기술구축을 위한 물리·화학적 성상 분석)

  • Kim, Young-Koo;Phae, Chae-Gun;Choi, Hoon-Keun;Kim, Sung-Mi;Hwang, Eui-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.100-114
    • /
    • 2005
  • Organic waste, which is defined as wastes derived from various biological organisms that contain more than 40% of organic materials, is generated about 100 million tons per year in Korea. These organic wastes are now controlled by several governmental entities, under different rules and regulations, leading to the improper management and inefficient treatment. Therefore, integrated management system is primarily needed for the efficient recycling of organic waste. In this study, six kinds of organic wastes, which are food waste, sludges(sewage, waste water, night soil), animal excreta, animals and plants residues, and three kinds of recycling by-products(compost, feed, anaerobic digestion by-products) made of organic wastes, were analyzed for their physical and chemical characteristics. On the basis of this result, a possibility for the efficient recycling of organic waste was investigated.

  • PDF

Characteristics of Stabilization of Excavated Solid Wastes by Aerobic and Anaerobic Landfilling (호기 및 혐기매립에 의한 굴착폐기물의 안정화 특성 연구)

  • Park, Jin-Kyu;Oh, Dong Ik;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.76-85
    • /
    • 2004
  • Anaerobic decomposition of municipal solid waste (MSW) had potential adverse impacts such as the production of methane and long-term post closure on human health and the environment. It was demonstrated that aerobic degradation of MSW resulted in the reduction of a methane yield and the enhancement of stabilization of MSW. Excavated solid wastes were both aerobically and anaerobically treated in order to evaluate the effects of air injection on the stabilization of landfill site. The municipal solid waste (MSW) samples were excavated from a 10-year old landfill (operation period: 1991. 11~1994. 11), Jeonju, Korea. Excavated municipal solid wastes are primarily composed of soils and vinyl/plastics. For the two aerobic simulated lysimeters, the levels of $O_2$ ranged 1.6~23.1% and the levels of $CO_2$ ranged 1.5~15.1%, which confirmed the aerobic decomposition. Aeration did prevent methane formation. For the anaerobic simulated lysimeter, the $CO_2$ rose as $O_2$ was consumed and low levels of CH4 were produced. The pH levels ranged from 7.7 to 8.9 for anaerobic lysimeter and from 7.3 to 8.5 for aerobic lysimeters. As expected, aerobic treatment proved to enhance the removal of biodegradable materials in the excavated solid wastes when monitoring the concentration of BOD, COD, $NH_4-N$, and $NO_3-N$ in the leachate.

  • PDF