• Title/Summary/Keyword: Waste-heat

Search Result 1,029, Processing Time 0.029 seconds

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Design of a Swash Plate Type of Steam Expander for Waste Heat Recovery (폐열 회수용 사판식 스팀 팽창기 설계)

  • Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.313-320
    • /
    • 2011
  • For a steam Rankine cycle to recover waste heat from the exhaust gas of an Internal combustion engine, a swash plate type of expander as a power conversion unit has been designed. Numerical simulation has been carried out to estimate the performance of the designed expander. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 2.67 kW from the exhaust gas waste heat of 25.2 kW. The expander output increased almost linearly with the amount of exhaust gas waste heat in the range of from 5~40 kW, and the expander and Rankine cycle efficiencies showed gradual decreases in the ranges of 72.2%~69.5% and 10.8%~10.4%, respectively.

Experimental Study on the Determination of Heat Transfer Coefficient for the KURT (KURT 내 열전달계수 결정에 관한 실험적 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.507-516
    • /
    • 2009
  • In cases of high-level radioactive waste repositories, heat load is apparent by radioactive waste decay. The safety of a waste repository would be influenced by changing circumstances caused by heat transfer through rock. Thus, a ventilation system is necessary to secure the waste repository. The first priority for building an appropriate ventilation system is completing a computer simulation research with thermal rock properties and a heat transfer coefficient. In this study, the heat transfer coefficient in KURT was calculated using the measurement of inner circumstance factors that include dry bulb and wet bulb temperature, rock surface temperature, and barometric pressure. The heater that is 2 m in length and 5 kw in capacity heats the inside of rock in the research module by $90^{\circ}C$. As a result of determining the heat transfer coefficient in the heating section, the changes of heat transfer coefficient were found to be a maximum of 7.9%. The average heat transfer coefficient is approximately 4.533 w/$m^2{\cdot}K$.

A Study on Reclamation of Waste Plastic: Plant Design (폐기프라스틱의 재활용에 관한 연구)

  • 김용욱;차시환
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1988
  • This research investigated the condition for plant design on reclamation of waste plastic by heat decomposition. The results were summarized as follows 1. The highest of oil product by heat decomposition is about 54.7%. 2. The optimum reaction temperature is about 300­40$0^{\circ}C$. 3. The optimum reaction time is 2­3 hours. 4. When the flow rate of 8­16 cm/sec in column reactor the yield is maximum. 5. Waste plastics yielded of carbon black product by heat decomposition at the optimum condition is about 23.5%. 6. Calorific values 0:1 were 9820 Kcal/kg.

  • PDF

Performance Characteristics of Type II LiBr-H2O Absorption Heat Pump in Accordance with the Refrigerant Heat Exchanger Configuration (냉매 열교환기 구성방법에 따른 제 2종 흡수식 히트펌프의 성능 특성 변화에 관한 연구)

  • Lee, Chang Hyun;Yoon, Jun Seong;Kim, In Gwan;Kwon, Oh Kyung;Cha, Dong An;Bae, Kyung Jin;Kim, Min Su;Park, Chan Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.373-384
    • /
    • 2017
  • The objective of this study was to determine the effect of refrigerant heat exchanger on the performance of type II absorption heat pump performance using numerical analysis. Two heat exchange installation methods were used: solution to refrigerant and waste hot water to refrigerant. These methods were compared to the standard model of hot water flow without using refrigerant heat exchanger. When waste hot waters were bypassed to refrigerant heat exchanger, COP was not affected. However, steam mass generation rates were increased compared to those of the standard model. When solutions were bypassed to the refrigerant heat exchanger, results were different depending on the place where the solution rejoined. COP and steam mass generation rates were lower compared to those when waste heat water was passed to refrigerant heat exchanger. Thus, it is possible to obtain higher steam mass generation rates by using waste water and installing refrigerant heat exchanger.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Rhi, Seok-Ho;Yoo, Seong-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • This paper is to study the heat transfer performance of the copper-water heat pipe with screen wicks. Recently, the semiconductor capacity of an electronic unit becomes larger, but its size becomes much smaller. As a result, a high- performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling waters and the mesh number of screen wicks. The distilled water was used as a working fluid. Based on the experimental results, when the copper-water heat pipe of 6mm diameter is used at the top heat mode, the heat transfer performance of 100 mesh 2 layers heat pipe is better than that of 150 and 200 mesh. The thermal resistance of the two layers with the 100-mesh screen was 0.7-$0.8^{\circ}C$/W.