• Title/Summary/Keyword: Waste water

Search Result 2,985, Processing Time 0.025 seconds

Monitoring of hot waste water spread from coastal power station by the Landsat TM images (확산의 모니터링)

  • Cheoi, Seung-Pil;Yang, In-Tae;Lee, Kee-Boo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.105-116
    • /
    • 1998
  • The spreading of hot waste water discharged from the coastal power station is a new problem to marin e circumstances and the fishery. Because the survey of hot waste water discharges should be performed is multaneously across wide areas, it is very difficult. Some sensors of the Landsat can draw the spread and distribution of water temperature from wavelength range of thermal infrared. The present study applied the GIS after stretching DN for the purpose of drawing a more accurate distribution of water temperature. Accordingly, the pattern of water temperature distribution could be expressed more precisely for a broad area, and the spread and distribution of hot waste water could be analyzed economically.

  • PDF

An Experimental Study on Heat Transfer Performance of Fluidized Bed Heat Exchanger for Heat Recovery from Multi-Heat Sources (다중열원 열회수형 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.57-62
    • /
    • 2017
  • The heat transfer performance of a multi-heat-source fluidized bed heat exchanger was analyzed. The fluidized bed heat exchanger examined in this study can simultaneously recover the waste heat from gas, water vapor, and hot water. The effects of waste water flow rate, gas flow rate, and cooling water flow rate were examined to find their experimental correlations with the heat transfer coefficient. A computer program using the correlations was developed in this study to predict the thermal performance of the fluidized bed heat exchanger. The calculated heat transfer rates of gas, water vapor, waste water, and cooling water were compared with the measured values. It was found that the error of the calculated values was less than 12%.

Study on Bio-H2 Production from Synthetic Food Waste and Activated Sludge from Industrial Waste Water Processes using Dark-fermentation (산업공정의 폐수처리에서 발생된 폐활성슬러지 및 인공음식폐기물을 이용한 생물학적 수소생성에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Mi-Hyung;Lee, Myoung-Joo;Hwang, Sun-Jin;Eom, Hyoung-Choon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.703-712
    • /
    • 2010
  • This study performed to extract operation factors of major organic wastes, which were food wastes and waste activated sludge generated in industries in order to use them as a substrate for bio-H2 production. According to the results of experimental analysis for hydrogen production capacity by various organic concentrations, the hydrogen production yield was the highest at 80 g/L, and the efficiency was improved by the pretreatment of waste activated sludge (acid treatment, alkali treatment). Hydrogen production efficiency was improved by mixing food wastes and waste activated sludge if waste activated sludge was below than 30%, however, it was decreased when it was more than 50%. The impacts of heavy metals on the hydrogen production shows that the inhibition level depends on the concentration of Cr, Zn, and Cu, Fe was able to enhance the hydrogen production.

Basic Studies on the Treatment and Recovery of Silver Contained in Waste Photographic Fixing Solution Using D2EHPA as an Extractant (D2EHPA를 추출제로 한 사진폐액 함유 은의 처리 및 회수에 대한 기초연구)

  • Chung, Won-Ju;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.288-293
    • /
    • 2006
  • Basic investigations have been carried out for the solvent extraction of silver contained in the waste photographic fixing solution using D2EHPA as an extractant. Extraction experiments were conducted using artificial waste solution which was made by dissolving $AgNO_3$ in distilled water along with actual waste fixing solution. For artificial waste solution, the extraction of silver was found to occur very rapidly at the initial stage of extraction. In addition, more silver was extracted as the volumetric ratio between aqueous phase and organic phase was decreased. The volumetric ratio of organic extractant to diluent was also taken as an influential variable and the extracted amount of silver was observed to decrease with temperature. The characteristics of silver extraction for actual fixing solution was generally similar to that for artificial waste solution. Regarding the kinetic analysis, the extraction of silver contained in the actual solution was observed to follow a first order reaction.

Measuring thermal conductivity and water suction for variably saturated bentonite

  • Yoon, Seok;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1041-1048
    • /
    • 2021
  • An engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW) is composed of a disposal canister with spent fuel, a buffer material, a gap-filling material, and a backfill material. As the buffer is located in the empty space between the disposal canisters and the surrounding rock mass, it prevents the inflow of groundwater and retards the spill of radionuclides from the disposal canister. Due to the fact that the buffer gradually becomes saturated over a long time period, it is especially important to investigate its thermal-hydro-mechanical-chemical (THMC) properties considering variations of saturated condition. Therefore, this paper suggests a new method of measuring thermal conductivity and water suction for single compacted bentonite at various levels of saturation. This paper also highlights a convenient method of saturating compacted bentonite. The proposed method was verified with a previous method by comparing thermal conductivity and water suction with respect to water content. The relative error between the thermal conductivity and water suction values obtained through the proposed method and the previous method was determined as within 5% for compacted bentonite with a given water content.

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

Physical and mechanical properties of cement mortar with LLDPE powder and PET fiber wastes

  • Benimam, Samir;Bentchikou, Mohamed;Debieb, Farid;Kenai, Said;Guendouz, Mohamed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.461-467
    • /
    • 2021
  • Polyethylene-terephthalate (PET) from bottle waste and linear low-density polyethylene (LLDPE) from barrels and tanks waste are widely available and need to be recycled. Recycling them in concrete and mortar is an alternative solution for their disposal. In this study various quantities of sand (5%, 10%, 15% and 20%) were substituted by powder from LLDPE waste. In addition, PET waste fibers (corrugated, straight) were added to the mortar with different percentages (0.5%, 1%, 1.5% and 2%) of cement mass. This paper evaluate the mechanical and physical properties of the composites in fresh (workability, air content and density) and hardened state (compressive and flexural strength, water absorption and total shrinkage). From the experimental results, it can be concluded that the strengthening in tensile of the mortar with plastic waste corrugated fibers is improved. Other important results are that the water absorption and the density rate are less than that of the ordinary mortar.

Methods for the Reduction of Consumption and Contamination of Water in a Newsprint Mill by Using Simulation Model and WRDF (전산모사기법과 WRDF를 활용한 ONP 재활용 공정의 용수 및 오염부하 절감 방안에 관한 연구)

  • 이영애;류정용;성용주;김용환;송재광;송봉근;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.54-59
    • /
    • 2004
  • The methods for the minimization of fresh water consumption, waste water generation and water contamination have been greatly investigated and developed for last ten years. Recently, the rising cost of waste water treatment and the more strict environmental regulation lead to the higher demand of more efficient and systematic methods for process water management. The water reuse technology, which not only reduce the process water needs but also minimize waste water generation within the process, could be one of most efficient way for current demand. In this study, the practical way for reduction of water pollution and optimal reuse or recycle of process water in a newsprint mill was investigated by using a simulation model. The result of computer simulation showed that the COD level of approach system could be reduced by 50% after the stock concentration at the 2nd disc filter was increased upto 30%. The application of WRDF(Wrinkled Rotary Drum Filter) to the newsprint mill was carried out with pilot scale. The process water treated by WRDF had enough cleanliness to substitute the forming fabric shower water with the PDF water, which could result in the 30% reduction in fresh water consumption.

Comparing the composting characteristics of food waste supplemented with various bulking agents

  • Lee, Jae-Han;Yeom, Kyung-Rai;Yang, Jun-Woo;Choi, You-Jin;Hwang, Hyun-Chul;Jeon, Young-Ji;Lee, Chang-Hoon;Choi, Bong-Su;Oh, Taek-Keun;Park, Seong-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.897-905
    • /
    • 2019
  • To compare the composting characteristics of food waste supplemented with various bulking agents, aerated composting was performed by mixing sawdust, ginkgo leaves, insect feces, and mushroom waste at ratios of 6 : 4 (w/w). The initial temperatures (day after treatment [DAT] 3) of the sawdust, ginkgo leaves, insect feces and the mushroom waste mixtures were 39, 58, 65, and 51℃, respectively. The DAT 3 temperature was the highest in the food waste-insect feces mixture (65℃) and the lowest in the sawdust one (39℃). However, the insect feces treatment was terminated at DAT 21 because of a high water content (70.92%). The water content (DAT 56) of the composted food waste supplemented with sawdust, mushroom waste, and ginkgo leaves stood at 51.28, 39.81, and 44.92%, respectively. Therefore, the fully mature composts satisfied the water content requirement of less than 55% as recommended in the fertilizer standards of the RDA of Korea. The results of the CoMMe-101, Solvita and seed germination index methods indicate that the mushroom waste and ginkgo leaves treatments matured relatively quicker than that of the sawdust one. Based on the above observations, it is concluded that the mushroom waste and ginkgo leaves are more effective bulking agents compared to sawdust and as such, are recommended as suitable replacements for sawdust in food waste composting.

Reduction of Salt Concentration in Food Waste by Salt Reduction Process with a Rotary Reactor (로터리식 저염화 공정설비에 의한 음식물 쓰레기의 염분농도 저감)

  • Kim, Wi-sung;Seo, Young-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • In order to reduce salt(as NaCl) contents in food waste and to improve the quality of discharged wastewater produced during the recycling process of food waste for the purpose of compost and feed stuff, a salt reduction process by added water into food waste was developed. The pilot plant with a rotary type salt reduction equipment to manage continuously 0.5 ton food waste per hour was constructed and the efficiency was tested. The amount of added water was calculated by the water content and the efficiency of dewatering process of food waste. Approximately 0.8 liter water per a kilogram of food waste was injected into the reactor in which food waste was pouring simultaneously, then diluted/mixed in a rotary reactor. About 1.1 liter of leachate including added water was generated, but the leachate contained a very high content of organic particles, so most particles were recovered by two step solid-liquid separation process. The first step was a gravitational filtering process using screens with a pore diameter of 1mm, and the second separation process was centrifugal process. Organic quality of food waste which had been desalted was maintained by inputting the entirely recovered organic particles. The efficiency of salt reduction of food waste was estimated by measuring a chloride anion by titration and salinity by a probe. The results by the two different measuring methods were always over 50%, and the quality of final wastewater was improved up to $200mg/{\ell}$ as TS(total solid) by an additional settling process after the two step solid-liquid separation process.

  • PDF