• Title/Summary/Keyword: Waste solubility

Search Result 85, Processing Time 0.022 seconds

Uranium Recovery from Nuclear Fuel Powder Conversion Plant Filtrate and its Thermal Decomposition Characteristics (핵연료분말 제조공정에서 발생된 여액으로부터 우라늄 회수 및 회수된 우라늄 화합물의 열분해 특성)

  • Jeong, Kyung-Chai;Jeong, Ji-Young;Kim, Byung-Ho;Kim, Tae-Joon;Choi, Jong-Hyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.204-209
    • /
    • 2002
  • In this study, $UO_4{\cdot}2NH_4F$, the precipitates which has low solubility, was obtained by chemical precipitation method to recover and reuse the trace uranium from the liquid waste producing in AUC process and for this compound it was characterized by means of chemical analysis, TG-DTA, XRD and FT-IR analyses. This compound was analyzed as $UO_4{\cdot}2NH_4F$ and shape of this precipitate was hexagonal type, having the size of 2∼3 ${\mu}m$. Also, the intermediates were obtained as $UO_4F,\;UO_4,\;UO_3,\;and\;U_3O_8$ by the thermal decomposition over the temperature of 220, 310, 515 and 640$^{\circ}C$, respectively. It is concluded that under the condition of a constant heating rate of 5$^{\circ}C$/min in air atmosphere range of between room temperature and 800$^{\circ}C$, thermal decomposition reaction mechanism of $UO_4{\cdot}2NH_4F$ is as follow; $UO_4{\cdot}2NH_4F{\rightarrow}UO_4F{\rightarrow}UO_4{\rightarrow}UO_3{\rightarrow}U_3O_8$.

Alkaline Pilot Processing for Recovery of Fish Muscle Protein and Properties of Recovered Protein (어육 단백질 회수를 위한 알칼리 Pilot 공정과 회수 단백질의 특성)

  • Jang, Young-Boo;Kim, Gun-Bae;Lee, Keun-Woo;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.1045-1050
    • /
    • 2006
  • Optimum operation condition for pilot scale of alkaline processing for fish muscle was investigated by measuring protein solubility, yield, texture, and water-holding capacity. Recovered protein yield was 33.2% for whole fish and 61.8% for minced muscle. Optimum homogenized speed and time, using industrial scale homogenizer, were 3,000 rpm and 5 min, respectively. Limited centrifugal force of continuous cylinder type was 4,000 rpm for recovering soluble protein, and 2,000 rpm for recovering precipitated proteins. The pH control agents such as citric acid, sodium phosphate and calcium oxide decreased the breaking force and deformation of recovered protein gel. The breaking force and deformation of the recovered proteins were high compared to conventional surimi. The breaking force and deformation were decreased by addition of salt, starch and bovine plasma proteins. Whiteness of recovered protein gel was lower than that of conventional surimi. Alkaline processing greatly decreased nitrogen content and chemical oxygen demand in waste water. The results suggest that alkaline processing has a potential as industrial production for recovering the proteins from fish muscle.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

Studies on utilization of agricultural waste products -Part 3. Separation of phytin from defatted rice bran- (농업부산물(農業副産物)의 이용성향상(利用性向上)에 관(關)한 연구(硏究) -제3보(第3報) 탈지미강(脫脂米糠)부터 phytin 분리(分離)-)

  • Shin, Jai-Doo
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.71-81
    • /
    • 1968
  • Defatted rice bran is mixed with diluted acid solution, the mixture is agitated some hrs. at constant temparature. After the mixture is filtered, thus filtrate is obtained. This filtrate is phytin extract solution. (Test-1) The alkali is added to this filtrate and filtered out, then the precipitation of phytin is obtained. (Test-2) At the test-1, the effect of kind of acid, conc. of acid, amount of extract sol'n., time of extraction, temp. of extraction, to the extract amount of phytin is tested. Consequently, the following facts are known. 1. Amount of phytin extract is greater HCI extraction than $H_{2}SO_4$ extraction. 2. At 0.3% HCI, the amount of phytin extract is greatest of all HCl extraction. 3. The sufficient amount of acid solution is 8-10 times of amount of defatted rice bran. 4. The time of extraction at room temperature is sufficient 8-12 hrs. 5. When extract temperature is $20-30^{\circ}C$, the amount of phytin extraction is greater of all temp. 6, When defatted rice bran 20 g is shanken with 160 ml of 0.3% HCl for 10 hr. at room temp., in this case the amount of phytin extract is 11.34% of defatted rice bran, it is 93% of theoretical yield. At the test-2 the effect of kind of precipitation agent, degree of nutralization to the amount of phytin prcipitation is tested. 1. Degree of nut. is best at pH 6.8-7.0. 2. When use of $Ca(OH)_2$ the amount of phytin precipitation is more than use of KOH, NaOH, or $NH_{4}OH$. 3. At pH 6.0-7.2, the solubility of phytin is followed. K-phytate > $NH_{4}-phytate$ > Na-phytate > Ca-phytate 4. When phytin extract solution is nutralized with $Ca(OH)_2$ to pH 7.0, the amount of phytin precipitation is 94.78% of theoretical yield.

  • PDF