• Title/Summary/Keyword: Waste products

Search Result 972, Processing Time 0.033 seconds

Extraction of Precipitated Calcium Carbonate from Oyster Shell waste and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, we reported that the influence of advanced functional mineral filler calcium carbonate ($CaCO_3$) extracted from oyster shell waste, which are rich mineral sources of $CaCO_3$. Oyster Shells, available in abundance, have no eminent use and are commonly regarded as waste. Their improper disposal causes a significant level of environmental concern and also results in a waste of natural resources. Recycling shell waste could potentially eliminate the disposal problem, and also turn an otherwise useless waste into high value added products. Oyster shell waste calcination process to produce pure lime (CaO) which have good anti-microbial property for waste water treatment and then focuses on its current applications to treat the coffee waste and its effluents for biological treatment and utilization as a fertilizers.

POLLUTION PREVENTION : ENGINEERING DESIGN AT MACRO-, MESO-, AND MICROSCALES

  • Allen, David T.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • Billions of tons of industrial waste are generated annually in industrialized countries. Managing and legally disposing of these wastes costs tens to hundreds of billions of dollars each year, and these costs have been increasing rapidly. The escalation is likely to continue as emission standards become even more stringent around the world. In the face of these rapidly rising costs and rapidly increasing performance standards, traditional end-of-pipe approaches to waste management have become less attractive. The most economical waste management alternatives in many cases have become recycling of the waste or the redesign of chemical processes and products so that wastes are prevented or put to productive use. These strategies of recycling or reducing waste at the source have collectively come to be known as pollution prevention. The engineering challenges associated with pollution prevention are substantial. This presentation will categorize the challenges in three levels. At the most macroscopic level, the flow of materials in our industrial economy, from natural resource extraction to consumer product disposal, can be redesigned. Currently, most of our raw materials are virgin natural resources that are used once, then discarded. Studies in what has come to be called industrial ecology examine the material efficiency of large-scale industrial systems and attempt to improve that efficiency. A second level of engineering challenges is found at the scale of individual industrial facilities, where chemical processes and products can be redesigned so that waste is reduced. Finally, on a molecular level, chemical synthesis pathways, combustion reaction pathways, and other material fabrication procedures can be redesigned to reduce emissions of pollution and unwanted by-products. All of these design activities, shown in Figure 1, have the potential to prevent pollution. All involve the tools of engineering, and in particular, chemical engineering.

  • PDF

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

A Study on the Collection and Transportation Processes of Used Oil Containers by Integrated Management System (통합관리 시스템을 이용한 윤활유 페빈용기 회수 ㆍ 처리에 관한 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • Used motor oil contains pollutants, including organic chemicals and meta]s. When disposed of improperly - in the trash, on the ground or in a sewer system - the pollutants may reach rivers, lakes or the ground water. Thus, all the waste oil products such as waste motor oil, waste oil container, and waste oil filter should be collected and transported for recycling or disposal by waste oil regulations. Because waste oil container is a valuable resource, waste oil containers can be reused, cleaned, buried, and burned for recycling processes. This paper presents the integrated management system that may increase the efficiency and productivity for collecting and reprocessing waste oil containers such as steel can and plastic container. The integrated management system consists of collection and transportation process management system and confirmation and certification process management system for waste oil containers.

Resource Circulation Plan using Material Flow Analysis of Waste Metals of Cobalt and Palladium (코발트와 팔라듐 폐금속자원의 흐름분석을 통한 자원순환 활성화 방안)

  • Lee, Hi Sun;Lee, Jeongmin;Yi, Sora
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.14-21
    • /
    • 2018
  • The rapid increase in the consumption of products that contain rare metals has highlighted the importance of recycling and recovering resources from these products when they enter the waste stream. Among various metal resources that can be recovered, this study analyzes the waste streams of cobalt and palladium to determine how their waste resource circulation can be improved at each stage of the waste stream. The findings of this study point to improvements and strategies that can be made at individual stages. First, at the discharge/import stage, the implementation of tariff quotas for specific recycled metal resources is suggested to allow the systemic categorization of waste metals as resources. At the collection/discarding stage, a major problem is the instability in the supply of scrap metals, which may be better managed by changing the bidding process for the scrap metals. At the pretreatment stage, possible areas for improvement are uncovered concerning technical areas, such as technological development and improving the efficiency of material recycling, as well as policy-wise, for instance, expanding the regulation for manufacturers to produce products that are designed to facilitate resource recovery, increasing incentive for closed recycling, and refining the guidelines and standards for recycling. At the resource recovery stage, as the waste metal recycling industry consists of businesses that vary in size, policies to promote cooperation and coexistence between large and smaller enterprises will benefit the industry in the long-run. Lastly, at the product production/export stage, a tariff on exporting waste resources that contain cobalt and palladium will help control the amount of waste metals that are shipped abroad.

Directions for Eco-friendly Utilization and Industrialization of Fishery By-products (수산부산물의 발생·처리 실태 및 산업화 방향)

  • Kim, Dae-Young;Lee, Jung-Sam
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.566-575
    • /
    • 2015
  • The study aims to identify the generation and treatment of fishery by-products in Korea and suggests future directions and strategies for their eco-friendly utilization and industrialization. First, the study focuses on the identification of the generation and their treatment in Korea since merely few study were conducted and they did not provide enough information regarding the overall generation and treatment at the national level. According to the estimation, Korea generates 800 thousand to 1,200 thousand tones of fishery by-product every year. The fishery by-products generated at large seafood markets and processing facilities are used or processed as fish meal and feed, but those generated from households and small seafood restaurants are currently treated as food waste. In addition, inadequately treated fishery by-products cause various problems such as spoiling urban landscape, creating odor and incubating pest. After identifying the generation and treatment of fishery by-products, the study suggests directions for the formulation of infrastructure for transition into resource circulation society, minimization of dumped waste and their eco-friendly recycling as resources, diversification of recycled goods and development into a high-value added industry. Finally, the study suggests detailed strategies for the directions such as establishment of legal and institutional foundation, separation of fishery by-products from wastes, development of technology tailored for commercialization, introduction of pilot projects for industrialization and cultivation of social enterprises.

The Evaluation of Scum Recyclability from Waste Sludge in Linerboard Mills (라이너지 제조공정 탈수 슬러지의 scum 재이용 가능성 평가)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.42-47
    • /
    • 2008
  • For the purpose of reduction of production cost in the industrial papermaking process, the use of waste paper has been more and more increased as a fibrous raw material, and the closed system of white water became closed more than ever. "Scum" indicates the floated sludge by a flotation during primary wastewater treatment process in paper mills. If the scum is used as the raw material, it could reduce both the raw material and solid waste treatment cost with even small quantity. In this study, the element survey and the toxicity measurement was carried out for recycling scum. A load factor of stock preparation process in paper mills was measured by somerville screen. Physical properties of paper sheet containing the accepted scum from the stock of AOCC or KOCC were evaluated. The result of this study shows that recycling scum has potential to be used in paper making system. It also might be able to reduce the required energy used by the pressing or drainage process, the raw material cost, and solid waste treatment cost due to the recycling of scum.

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.