• Title/Summary/Keyword: Waste oil

Search Result 533, Processing Time 0.027 seconds

Ultrasonic Pretreatment for Thermophilic Aerobic Digestion in Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Kwak, Myung-Shin;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.469-474
    • /
    • 2000
  • In order to enhance the degradation efficiency of waste activated sludge (WAS) by thermophilic aerobic digestion, an ultrasonic pretreatment was examined. It was observed that ultrasonic pretreatment increased the solubilization of organic matter in the WAS and that the solubilization ratio of the organics increased during the first 30 min but did not extensively increase thereafter. Therefore, a pretreatment time of 30 min was determined to be the economical pretreatment time from the experimental results. From the digestion experiments, which was conducted using the WAS collected from an oil refinery plant in Inchon, Korea, investigating the effects of an ultrasonic pretreatment on thermophilic aerobic digestion, it was confirmed that the proposed ultrasonic pretreatment was effective at enhancing the release of the cellular components in WAS and the degradation of released components in the thermophilic aerobic digestion.

  • PDF

Utilization of Crawfish Processing Wastes as Carotenoids, Chitin, and Chitosan Sources (캐로티노이드 , 키틴, 키토산의 원료로서 Crawfish 가공 폐기물의 이용)

  • No, hong-Hyoon;Samuel P.Meyers
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 1992
  • The Louisiana crawfish industry comprises the largest concentration of crustacean aquaculture in the United States. Processing plants throughout the culture region annually generate as much as 80 million pounds of peeling waste during recovery of the 15% (by weight) edible tail meat. A commercial oil extraction process for recovery of carotenoid astaxanthin from crawfish waste has been developed. Crawfish pigment in its various forms finds applications as a source of red intensifying agents for use in aquaculture and poultry industries. Crawfish shell, separated in the initial pigment extraction step, is an excellent source of chitin. Applicable physicochemical procedures for isolation of chitin from crawfish shell and its conversion to chitosan have been developed. Crawfish chitosan has been demonstrated to be both an effective coagulant and ligand-exchange column material , respectively, for recovery of valuable organic compounds from seafood processing wastewater.

  • PDF

Separation of Tetrodotoxin, DHA and EPA from Pufferfish Liver Waste (복어간 폐기물로부터 Tetrodotoxin, DHA 및 EPA의 분리)

  • 차병윤;최진석;임정규;이동익;이원갑;이은열;김희숙;김동수
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2000
  • The present study was undertaken to separate the available components effectively, such as tetrodotoxin(TTX), docosahexaenoic acid(DHA, C22:6,ω-3) and eicosapentaenoic acid (EPA, C20:5,ω -3) from pufferfish liver waste, which are known to have high values as bioactive materials. By using ultrafiltration, it was possible to separate high contents of 68mg TTX from pufferfish liver waste. In contrast, by activated charcoal column, it was to obtain about 54mg TTX. The recovering ratios were 65.3% and 45.0% in the two different methods of ultrafiltration and activated charcoal column, respectively. From the results of HPLC and gas chromatography-mass spectrometry(GC-MS), the obtained toxins were identified to be TTX and its derivatives. In addition, it was also possible to obtain 72.3g DHA and 11.4g EPA from 1kg of pufferfish liver by high performance liquid chromatography (HPLC). These amounts of DHA and EPA were also 17.70% and 1.04% in the total lipid of pufferfish liver oil from analysis of gas chromatography(GC), respectively.

  • PDF

Petroleum sludge treatment and disposal: A review

  • Johnson, Olufemi Adebayo;Affam, Augustine Chioma
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Petroleum industry produces one of the popular hazardous waste known as Petroleum Sludge. The treatment and disposal of petroleum sludge has created a major challenge in recent years. This review provides insights into various approaches involved in the treatment, and disposal of petroleum sludge. Various methods used in the treatment and disposal of petroleum sludge such as incineration, stabilization/solidification, oxidation, and bio-degradation are explained fully and other techniques utilized in oil recovery from petroleum sludge such as solvent extraction, centrifugation, surfactant EOR, freeze/thaw, pyrolysis, microwave irradiation, electro-kinetic method, ultrasonic irradiation and froth flotation were discussed. The pros and cons of these methods were critically considered and a recommendation for economically useful alternatives to disposal of this unfriendly material was presented.

Production of Medium-chain-length Poly (3-hydroxyalkanoates) by Pseudomonas sp. EML8 from Waste Frying Oil (Pseudomonas sp. EML8 균주를 이용한 폐식용류로부터 medium-chain-length poly(3-hydroxyalkanoates) 생합성)

  • Kim, Tae-Gyeong;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.90-99
    • /
    • 2021
  • In this study, to reduce the production cost of poly(3-hydroxyalkanoates) (PHA), optimal cell growth and PHA biosynthesis conditions of the isolated strain Pseudomonas sp. EML8 were established using waste frying oil (WFO) as the cheap carbon source. Gas chromatography (GC) and GC mass spectrometry analysis of the medium-chain-length PHA (mcl-PHAWFO) obtained by Pseudomonas sp. EML8 of WFO indicated that it was composed of 7.28 mol% 3-hydrxoyhexanoate, 39.04 mol% 3-hydroxyoctanoate, 37.11 mol% 3-hydroxydecanoate, and 16.58 mol% 3-hydroxvdodecanoate monomers. When Pseudomonas sp. EML8 were culture in flask, the maximum dry cell weight (DCW) and the mcl-PHAWFO yield (g/l) were showed under WFO (20 g/l), (NH4)2SO4 (0.5 g/l), pH 7, and 25℃ culture conditions. Based on this, the highest DCW, mcl-PHAWFO content, and mcl-PHAWFO yield from 3-l-jar fermentation was obtained after 48 hr. Similar results were obtained using 20 g/l of fresh frying oil (FFO) as a control carbon source. In this case, the DCW, the mcl-PHAFFO content, and the mcl-PHAFFO yields were 2.7 g/l, 62 wt%, and 1.6 g/l, respectively. Gel permeation chromatography analysis confirmed the average molecular weight of the mcl-PHAWFO and mcl-PHAFFO to be between 165-175 kDa. Thermogravimetric analysis showed decomposition temperature values of 260℃ and 274.7℃ for mcl-PHAWFO and mcl-PHAFFO, respectively. In conclusion, Pseudomonas sp. EML8 and WFO could be suggested as a new candidate and substrate for the industrial production of PHA.

Modification of EPDM Rubbers for Enhancement of Environmental Durability of Aerator Membrane (산기관용 멤브레인 고무판의 환경내구성 향상을 위한 EPDM 고무의 개질)

  • Ahn, Won-Sool
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.107-112
    • /
    • 2008
  • A study on the enhancement of environmental durability of EPDM rubber materials for the aerator membrane was performed using a butyl rubber as a modifier. A conventional EPDM rubber formulation was evaluated as having about 26.0 wt% or more oil content from the chloroform immersion test. These oils would be gradually and continuously deleted from the aerator membrane when directly exposed to a waste-water or chemically corrosive fluids, making the membrane less flexible and the performance worse. To improve this, a butyl rubber (IIR) was utilized as the modifier for a low-ENB type of EPDM rubber formulation with low-oil content. The environmental durability of the IIR-modified EPDM rubber material was expected to be greatly enhanced compared to the conventional one. However, the mechanical and performance properties such as elongation, tensile strength, and air bubble size, etc. were still maintained as good as in the conventional one. Furthermore, TGA analysis of the IIR-modified EPDM material showed that there would be partially compatible between IIR and EPDM. It also showed that the initial degradation temperature of the IIR-modified EPDM could be somewhat increased, exhibiting the enhanced compatibility among the components and, thereby, more enhanced environmental durability.

Tansport Rate of Chromium ion from Waste Water through the Liquid Surfactant Membrane Containing Carrier (운반체 함침 유화액막에 의한 폐수중 크롬(VI)의 이동속도)

  • Woo, In-Sung;Kim, Kyoung-Ho;Lee, Sang-Jin;Kang, An-Soo;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 1988
  • The transport of chromium(VI) ion from waste water through the liquid surfactant membrane containing tri-n-octylamine as a carrier, was analyzed by a slab model and was investigated through experiments. For the experiment of membrane stability, concentrations of surfactant and liquid paraffin oil were analyzed. Extraction experiments were carried out to observe the effect of system variables, such as concentrations of carrier, and initial chromium(VI) ion in external aqueous phase at $25^{\circ}C$. It is concluded that the most stable formation of liquid membrane emulsion was obtained when surfactant concentration is above 3 wt.% and liquid paraffin oil concentration is 50 vol.%. The theoretical equation on the transport of chromium(VI) ion agreed well with the experimental results.

  • PDF

A Study on Hospital Wasted Plastic by the Pyrolysis over Catalyst (촉매첨가에 의한 병원폐플라스틱의 열분해 처리에 관한 연구)

  • 윤오섭;김수생
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.2
    • /
    • pp.51-63
    • /
    • 1987
  • We identified pyrolysis condition, effect of catalyzer and pyrolysis mechanism through contact decomposed method by adding Bentonite in waste plastic of hospital solid waste. The result from this study were summarized as the followings: 1. The optimum fuel oil were obtained when hospital wasted plastic (P.P) and Bentonite were mixed in the ratio of 30:1. 2. Maximum absorption wave of hospital wasted plastic (P.P) appeared at 2900cm$^{-1}$, 1480cm$^{-1}$, 1360cm$^{-1}$ and 1180 cm$^{-1}$ by FT-IR and the plastics were identified and confirmed. 3. Reaction temperature of hospital wasted plastic started at 360$\circ$C, proceed rapidly at 437.5$\circ$C and finished at 481$\circ$C. The residue was 0.729%. When bentonire was added started at 318$\circ$C, proceed rapidly at 399.5$\circ$C and finished at 449.3$\circ$C, the residue being 4.23%. 4. Pyrolysis products of hospital wasted plastic were about 90 kinds. The Main components were 2-Heptene-3-ethyl-4-trimethyl (27.4%), 1-Heptene-2-isobutyl-6-methyl (8.6%) and 1-Heptene decene (7.7%). There was little component difference at different temperature. This is the result from stability of decomposition product. 5. Pyrolysis efficiency increased by the addition Bentonire. 6. Some of the Environmental and Sanitary problems could be solved by the pyrolysis of hospital wasted plastic and the decomposed products were to be used as fuel oil.

  • PDF

Quality Properties of Blast Furnace Slag Brick Using the Recycled Fine Aggregates Depending on Waste Oil and Curing Method (폐식용유 혼입 및 양생방법에 따른 순환잔골재 사용 고로슬래그 벽돌의 품질특성)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.61-62
    • /
    • 2011
  • This study reviewed the effect of W/B, WO and curing method on the quality properties of RA using the BS brick under the zero cement condition. compressive strength was found to show an increasing trend as W/B increased, but to show a improvement in case steam curing was conducted, showing a higher increase at 1 day age in comparison with 7 day age. In addition, the compressive strength on the mixing of WO didn't show any specific trend. The absorption tended to decrease as W/B increased and met the less than 10% regulation value at 30~35% W/B in case WO was used, there appeared a decrease attributable to capillary pore filling effect due to saponification. On the other hand, compressive strength increases, th absorption showed a gradually decreasing tendency.

  • PDF

Effects of lemon or cinnamon essential oil vapor on physicochemical properties of strawberries during storage

  • Elise Freche;John Gieng;Giselle Pignotti;Salam A. Ibrahim;Helen P. Tran;Dong U. Ahn;Xi Feng
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.549-561
    • /
    • 2023
  • Recently, consumers have gained an interest in natural and minimally processed foods, inciting the food industry to consider using of natural products as preservatives. Strawberries are a widely consumed fruit but are also highly perishable. Therefore, in this study, the physicochemical properties of strawberries (Fragaria×ananassa) were evaluated after a 12-h treatment with lemon essential oil (Citrus×limon) or cinnamon essential oil (Cinnamomum cassia) vapor during storage at 22℃ for 4 days in an accelerated shelf-life study and 4℃ for 18 days in a validation study. Weight loss was blunted in fruit treated with oil vapor during the first days of storage (p<0.05). Lemon essential oil delayed fruit darkening (p<0.05) but reduced the firmness of strawberries (p<0.05). Strawberries treated with cinnamon essential oil had a higher concentration of reducing sugars (p<0.05), and a decrease of 16.7% visible decay, although the difference was insignificant. Oil vapor treatment did not alter the pH, organic acid content, or soluble solid content during storage compared to the control. Since lemon and cinnamon essential oils have well-documented antimicrobial properties, they may be suitable for the natural preservation of fruit. This study provides new information on using essential oil vapor treatment to preserve fruits, and potentially decrease fruit loss and waste.