• Title/Summary/Keyword: Waste lead battery

Search Result 7, Processing Time 0.018 seconds

Development of Voltage Regulator and Pulse Charger Using Pulse Current for Reuse of the Waste Lead Acid Battery (폐납축전지 재활용을 위한 펄스전류에 의한 전압조정기와 펄스충전기의 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • In this study, the pulse charger and voltage regulator are proposed that can reuse the waste lead acid battery. The first we develop the voltage regulator that can reuse the waste lead battery. And the pulse current is applied to the terminal of the waste lead acid battery. The voltage regulator is available principle of the pulse current which can reduce the sulfate to incipient material such as Pb and PbO2. Therefore the internal resistance of the lead acid battery is decreased, the performance of the lead acid battery is improved and the durability is prolonged. The second we develop the pulse charger using the voltage regulator. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead acid battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead acid battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of the voltage regulator and pulse charger such as the good performance and the prolonged durability in lead acid battery of the small and large capacity.

An Study for reuse of the waste lead battery using Pulse Charger with mode conversion type (모드 전환형 펄스충전기론 이용한 폐납축전지 재활용에 관한 연구)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Sang-Dong;Shin, Young-Mi;Kim, Jong-Dal;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, the pulse charger with mode consersion type is proposed that can reuse the waste lead battery. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of pulse charger such as the good performance and the prolonged durability in lead battery according to capacity states.

  • PDF

A Cross-check of Domestic Lead Material Flow in Public Database Sets for the Recycling Status Analysis (재활용 현황파악을 위한 공공 자료별 국내 납 물질 흐름 상호 확인)

  • Lee, Sang-hun;Kim, Jungeun
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.63-69
    • /
    • 2021
  • Supply deficit of lead commodities and environmental pollution can be simultaneously resolved through the recovery and recycling of waste lead. The recent recovery of lead through recycling of the lead battery waste is a positive development. To maximize the effect of lead recovery and recycling in the future, the updated status of the lead material flow should be recognized. However, such an analysis at the preliminary stages may be cumbersome owing to the complexity and diversity of emission sources and material streams. At this stage, a preliminary screening by domestic lead flow using public information should be feasible. Therefore, in this study, using the data from the UN Comtrade and domestic PRTR (Pollutant Release and Transfer Register) databases, the amounts of lead import, emission, and transfer were identified and cross-checked with the domestic lead flow described in the National Material Flow Analysis database. The lead flow for major categories such as waste lead-acid batteries showed a rough consistency between the databases.

Level of Lead in Air and Blood Zinc Protoporphyrin of Workers in Lead Plants (연 취급 노동자의 연 폭로 수준 및 혈중 Zinc Protoporphyrin 농도)

  • 김창영
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.95-103
    • /
    • 1991
  • For the purpose of estimating the working environment and the relationship between the airborne lead concentration and the ZPP level in the whole blood of the workers, the airborne lead concentrations and the ZPP level were measured at the 26 plants which deal with lead, from October 5 to November 5 in 1988. Analysis of the airborne lead concentration was performed by NIOSH Method 7082, and the ZPP level was measured by a hematofluorometer. The following results are concluded. 1. The average airborne lead concentration of the lead battery manufactures is 0.025mg/m$^{3}$ and that of the secondary lead smelters is 0.023mg/m$^{3}$. There were no significant differences between industry (p>0.1) 2. At the lead battery manufacture, the process of lead powder production showed the highest concentration of 0.034mg/m$^{3}$ but there were no significant differences among the processes (p>0.1). At the secondary lead smelter, the process of dismantling waste batteries showed the highest concentration 0.141mg/m$^{3}$, and there were very significant differences among the processes (p<0.005). 3. The ZPP level in the whole blood showed significant differences between industry (p<0.10). The average ZPP level of the lead battery manufactures is 133.0 + 106.3 $\mu$g/100ml and that of the secondary lead smelters is 149.6 + 110.9 $\mu$g/100ml. 4. The correlation coefficients between the airborne lead concantration and ZPP level were 0. 426 (p<0.001) for the lead battery manufactures and 0.484 (p<0.001) for the secondary lead smelters. The correlation coefficients between the work duration (in months) and the ZPP level were 0.238 (p<0.001) for the lead battery mannfactures and 0.075 (p>0.10) for the secondary lead smelters. 5. The linear regression equation, with the airborne lead concentration as an independent variable and the ZPP level as a dependent variable, is Y=96.84+1300.34X (r=0.448, p<0.001) for the 26 plants which deal with lead. The linear regression equation, with the work duration(in months) as an independent variable and the ZPP level as a dependent variable, is Y=127.28 +0.49X (r=0.162, p<0.05). 6. The correlation coefficients between the amount of inhaled lead and ZPP level were 0.349 (p < 0.001) for the lead battery manufactures and 0.318(p<0.001) for the secondary lead smeltes. The linear regression equation for the 26 plants surveyed, with the amount of inhaled lead as an independent variable and ZPP level as a dependent variable, is Y=123.63+18.82X (r=0. 335, p<0.001).

  • PDF

Evaluation of Lead Exposure Characteristics by Process Category and Activity (작업공정 및 활동에 따른 국내 작업장 납 노출특성 평가)

  • Dohee Lee;Naroo Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.19-33
    • /
    • 2023
  • Objectives: The purpose of this study is to systematically identify situations where exposure levels are expected to be high by structuring domestic lead measurement data according to exposure processes and activities. Methods: Occupational exposure data on lead was collected from the results of the Evaluation of Reliability of Working Environment Measurement conducted by the government from 2019 to 2020. Lead exposure characteristics were analyzed by PROC (process category) and activity. The Risk Characterization Ratios (RCRs) of five PROCs according to ventilation type and lead content were evaluated using the MEASE (Metal's EASE) model. Results: The exposure data on lead (n=250) was classified into 12 PROCs and 12 activities, with an average concentration of 0.040 mg/m3 and about 14% exceeding the occupational exposure limit of 0.05 mg/m3. Processes with high exposure levels were PROC 7 (industrial spraying), 23 (open processing and transfer operations of molten metal), 24 (mechanical treatment), 25 (welding), and 26 (handling of powder containing lead). The results of evaluating RCR for the five PROCs were greater than 1 or close to 1 even if local exhaust ventilation was used. Conclusions: There is a possibility that the concentration of exposure is high in the casting and tapping of molten metal containing lead, mechanical treatment such as fracturing and abrasion, handling of powder, spraying, battery manufacturing, and waste battery recycling processes. It is necessary to implement chemical management policies for workplaces with such processes.

Reverse Logistics Process for Electric Vehicle Batteries (전기자동차 배터리 역물류 프로세스 연구)

  • Seo, Dong-Min;Kim, Yong-Soo;Kim, Hyun-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.57-70
    • /
    • 2011
  • To address global climate change, various governments are investing in electric vehicle research and, especially in Korea, the application of electric vehicles to public transportation. The lithium batteries used in electric vehicles typically have an expected life cycle of 2-5 years. If electric vehicles become commonly used, they will generate many discarded batteries that could be harmful to the environment. Additionally, lithium batteries are potentially explosive and should be handled appropriately. Thus, reverse logistics issues are involved in handling expired batteries efficiently and safely. Reverse logistics includes the collection, recycling, remanufacturing, and discarding of waste. This study developed a reverse logistics process for electric vehicle batteries after analyzing the as-is process for lead and lithium batteries. It also developed possible disposal regulations for electric vehicle batteries based on current laws regarding conventional batteries.

Thirteen-year Experience of Permanent Epicardial Pacing in Children (소아연령군에서의 영구 심외막 심박 조율 13년 경험)

  • 한국남;임홍국;김웅한;김용진;노준량;배은정;노정일;윤용수;안규리
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.499-503
    • /
    • 2004
  • Background: We investigated the longevity, thresholds of epicardial pacemaker and causes of reoperation in the pediatric patients who underwent epicardial pacemaker implantation performed during the last 13 years Material and Method: 121 operations were performed in 83 patients from January 1989 to July 2002. We analyzed the stimulation threshold, resistance, R-wave and P-wave, and sensitivity of pacemaker lead at initial implantation. Longevity and causes of reoperations were investigated. Result At implantation, epicardial ventricular mean stimula-tion threshold was 1.2$\pm$0.1 (0.1∼5) mV, mean resistance was 519.1$\pm$18.1 (319∼778) Ohm, and mean R-wave sensitivity was 8.9$\pm$0.7 (4∼20) mV, and mean P wave sensivity was 2.5$\pm$0.7 (0.4∼12) mV. The mean longe-vity of pacemaker generator was 64.7$\pm$3.7 (2∼196) months. The reoperation free rate was 94.6% for 1 year, 93.6% for 2 years, 80.8% for 5years, 63.7% for 7 years, and 45.5% for 10 years. The causes of reoperation were battery waste in 26 cases and lead malfunction in 9 cases. There was no postoperative death related to pacemaker malfunction. Conclusion: in the childrens, average longevity of epicardial pacemaker was within accep-table range. 19.1% of the patients required pacemaker related reoperation. However, recent developments, including steroid eluting lead, 6.7% of the patients required pacemaker related reoperation, look promising in expansion of pacemaker life span.