• Title/Summary/Keyword: Waste immobilization

Search Result 79, Processing Time 0.023 seconds

A Study of Immobilization Performance Requirements for Heterogeneous Radioactive Waste

  • Noh-Gyeom Jeong;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2024
  • Highly radioactive waste is solidified to restrict leaching, retain its shape, and maintain its structural stability to prevent it from affecting humans and the environment as much as possible. This operation should be performed consistently regardless of whether the waste is homogeneous or heterogeneous. However, currently, there are no specific performance requirements for heterogeneous waste in Korea. This study reviewed domestic research results and the status of overseas applications, and proposed immobilization requirements for heterogeneous waste to be applied in Korea. IAEA safety standards, domestic laws, and waste acceptance criteria were reviewed. The status of heterogeneous waste immobilization in countries such as the United States, France, and Spain was reviewed. Most countries treat heterogeneous waste by encasing it in concrete, and impose immobilization requirements on this concrete. Based on these data, safety standards for the thickness, compressive strength, and diffusion limit of this concrete material were proposed as immobilization requirements for heterogeneous waste disposal in Korea. Quantitative values for the above requirements need to be derived through quantitative assessments based on the characteristics of domestic heterogeneous waste and disposal facilities.

RADAR level measurement in Joule heated ceramic melter: A novel technique

  • Suneel, G.;Mahashabde, Mukesh;Borkotoky, Ritusmita;Sharma, Nitin Kumar;Pradeep, M.P.;Gayen, J.K.;Pimparkar, H.R.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1176-1180
    • /
    • 2021
  • The current study relates to RADAR (RAdio Detection and Ranging) application for level measurement of vitrified radioactive liquid nuclear waste. The vitrification of radioactive liquid waste is carried out in special equipment called 'Melters'. The study is directed towards the design and frequency modulation used in the level measurement of vitrified waste. More specifically, the RADAR design and frequency used for level measurement in a melter. This level measurement technique can also be used for dynamic vitrification process and can be used to measure the level variations without using any external medium/material and using only electromagnetic waves. Also, this technique is durable and accurate even under the high radioactive environment present inside the melter.

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

Crystal Phase Changes of Zeolite in Immobilization of Waste LiCI Salt

  • KIM Jeong-Guk;LEE Jae-Hee;Lee Sung-Ho;KIM In-Tae;KIM Joon-Hyung;KIM Eung-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.176-181
    • /
    • 2005
  • The electrolytic reduction process and the electrorefining process, which are being developed at the Korea Atomic Energy Research Institute (KAERI), are to generate molten waste salts such as LiCI salt and LiCI-KCI eutectic salt, respectively. Our goal in waste salt management is to minimize a total waste generation and fabricate a very low­leaching waste form such as a ceramic waste form. Zeolite has been known to one of the most desirable media to immobilize waste salt, which is water soluble and easily radiolyzed. Zeolite can be also used to the removal of fission products from the spent waste salt. Molten LiCI salt is mixed with zeolite A at $650^{\circ}C$ to form a salt-loaded zeolite, and then thermally treated in above $900^{\circ}C$ to become an immobilized product with crystal phase of $Li_{8}Cl_{2}$-Sodalite. In this work, a crystal phase changes of immobilization medium, zeolite, during immobilization of molten LiCI salt using zeolite A is introduced.

  • PDF

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering (고상소결에 의한 방사성 희토류산화물의 고화)

  • Ahn, Byung-Gil;Park, Hwan-Seo;Kim, Hwan-Young;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare eath oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix(ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilzed with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

Hollandite-rich Synroc for Immobilization of Sr/Cs Separated from HLW Liquid

  • Zhao Yulong;Ii Baojun;xu Jianhua;Zhang Chuanzhi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.329-337
    • /
    • 2005
  • Synroc which comprises hollandite-rich ($Ba_{1-x}Cs_{2x}\;(Al_yTi_{2-y})\;Ti_{6}O_{16},\;75wt\%$), perovskite ($Ca_{1-x}Sr_xTiO_3,\;15wt\%$) and rutile ($TiO_2,\;10wt\%$) is devised for the immobilization of Sr/Cs (1:3, wt$\%$) separated from HLW liquid. Especially, hollandite-rich Synroc with different contents of Al element is fabricated, and its mineral phase assemblage and microstructure are determined by using XRD and SEM/EDS. The durability test is carried out by using MCC-1 method, leachate is analyzed by using ICP/MS and ICP/ AES. The results indicate that hollandite-rich Synroc variants is a suitable host for Immobilization of Sr/Cs separated from HLW liquid.

  • PDF