DOI QR코드

DOI QR Code

RADAR level measurement in Joule heated ceramic melter: A novel technique

  • Suneel, G. (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Mahashabde, Mukesh (Nuclear Recycle Board, Bhabha Atomic Research Centre) ;
  • Borkotoky, Ritusmita (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Sharma, Nitin Kumar (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Pradeep, M.P. (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Gayen, J.K. (Waste Immobilization Plant, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities) ;
  • Pimparkar, H.R. (Nuclear Recycle Board, Bhabha Atomic Research Centre) ;
  • Ravi, K.V. (Nuclear Recycle Board, Bhabha Atomic Research Centre)
  • 투고 : 2020.04.20
  • 심사 : 2020.09.13
  • 발행 : 2021.04.25

초록

The current study relates to RADAR (RAdio Detection and Ranging) application for level measurement of vitrified radioactive liquid nuclear waste. The vitrification of radioactive liquid waste is carried out in special equipment called 'Melters'. The study is directed towards the design and frequency modulation used in the level measurement of vitrified waste. More specifically, the RADAR design and frequency used for level measurement in a melter. This level measurement technique can also be used for dynamic vitrification process and can be used to measure the level variations without using any external medium/material and using only electromagnetic waves. Also, this technique is durable and accurate even under the high radioactive environment present inside the melter.

키워드

참고문헌

  1. G. Suneel, S. Rajasekaran, J. Selvakumar, C.P. Kaushik, J.K. Gayen, K.V. Ravi, Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass, J. Nucl. Eng. Technol. 51 (9) (2019) 746-754. https://doi.org/10.1016/j.net.2018.12.002
  2. G. Suneel, P.M.S. Sai, C.P. Kaushik, J.K. Gayen, K.V. Ravi, A. Roy, Experimental investigation and numerical modeling of a joule-heated ceramic melter for vitrification of radioactive waste, J. of Hazardous, Toxic, and Radioactive Waste 23 (1) (2019), 2019.
  3. Balamuragan T. Sivaprakasam, C.V. Krishnamurthy, K. Arunachalam, Design and demonstration of a RADAR gauge for in-situ level measurement in furnace, IEEE Sensor. J. 18 (10) (2018) 4081-4088. https://doi.org/10.1109/JSEN.2018.2816016
  4. C.S.A. Gong, H.K. Chiu, L.R. Huang, C.H. Lin, Z.D. Hsu, P.H. Tu, Low-cost combelectrode capacitive sensing device for liquid-level measurement, IEEE Sensor. J. 16 (9) (2016) 2896-2897. https://doi.org/10.1109/JSEN.2016.2524696
  5. H. Canbolat, A novel level measurement technique using tree capacitive sensors for liquids, IEEE Trans. Instrum. Meas. 58 (10) (2009) 3762-3768. https://doi.org/10.1109/tim.2009.2019715
  6. K. Chetpattananondh, T. Tapoanoi, P. Phukpattaranont, N. Jindapetch, A selfcalibration water level measurement using an interdigital capacitive sensor, Sensors Actuators, A Phys. 209 (2014) 175-182. https://doi.org/10.1016/j.sna.2014.01.040
  7. S.C. Bera, H. Mandal, S. Saha, A. Dutta, Study of a modified capacitance-type level transducer for any type of liquid, IEEE Trans. Instrum. Meas. 63 (3) (2014) 641-649. https://doi.org/10.1109/TIM.2013.2282194
  8. T. Nakagawa, A. Hyodo, K. Kogo, H. Kurata, K. Osada, S. Oho, Contactless liquidlevel measurement with frequency-modulated millimeter wave through opaque container, IEEE Sensor. J. 13 (3) (2013) 926-933. https://doi.org/10.1109/JSEN.2012.2220346
  9. H. Sakaino, Camera-vision-based water level estimation, IEEE Sensor. J. 16 (21) (2016) 7564-7565. https://doi.org/10.1109/JSEN.2016.2603524
  10. T. Ihara, N. Tsuzuki, H. Kikura, Development of the ultrasonic buffer rod for the molten glass measurement, Prog. Nucl. Energy 82 (2015) 176-183. https://doi.org/10.1016/j.pnucene.2014.07.041
  11. L.S. Boehmer, AN ultrasonic instrument for continuous measurement OF sodium levels IN fast breeder reactors, IEEE Trans. Nucl. Sci. 23 (1) (1976) 359-362. NS-. https://doi.org/10.1109/TNS.1976.4328271
  12. M. Pieraccini, et al., Microwave sensor for molten glass level measurement, Sensors Actuators, A Phys. 212 (2014) 52-57. https://doi.org/10.1016/j.sna.2014.03.014
  13. G. Armbrecht, C. Zietz, E. Denicke, I. Rolfes, Dielectric tube antennas for industrial radar level gauging, IEEE Trans. Antenn. Propag. 60 (11) (2012) 5083-5091. https://doi.org/10.1109/TAP.2012.2207693
  14. M. Pieraccini, et al., Radar gauge for molten glass level measurement, Eur. Microw. Week 2013, EuMW 2013 - Conf. Proceedings; EuRAD 2013 10th Eur. Radar Conf. (2013) 133-136.
  15. Y.R. Yadam, B.T. Sivaprakasam, K.C. Venkata, K. Arunachalam, Step frequency continuous wave RADAR sensor for level measurement of molten solids, J. Electromagn. Waves Appl. 32 (3) (2018) 281-292. https://doi.org/10.1080/09205071.2017.1380540
  16. A. Kaineder, C. Michenthaler, D. Hammerschmidt, A. Stelzer, Guided wave tank level sensor, Eur. Microw. Week 2019, EuMW 2019 - Conf. Proceedings; EuRAD 2019 16th Eur. Radar Conf. (2019) 301-304.
  17. P. Gulden, M. Vossiek, M. Pichler, A. Stelzer, Application of state-space frequency estimation to a 24-GHz FMCW Tank level gauging system, Eur. Microw. Week 2003, EuMW 2003 - Conf. Proceedings; 33rd Eur. Microw. Conf. (2003) 995-998.
  18. M. Yoshioka, S. Torata, H. Igarash, T. Takahashi, M. Horie, Glass melter and process developed for PNC Tokai vitrification facility, J. Waste Management 12 (1992) 7-16. https://doi.org/10.1016/0956-053X(92)90003-2
  19. P. Woskov, S.K. Sundaram, W.E. Daniel, D. Miller, Millimeter-wave measurements of nuclear waste glass melts, in: Conf. Proceedings; Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005, pp. 223-224. Williamsburg.