• Title/Summary/Keyword: Waste heat water

Search Result 303, Processing Time 0.031 seconds

Performance Characteristics of Type II LiBr-H2O Absorption Heat Pump in Accordance with the Refrigerant Heat Exchanger Configuration (냉매 열교환기 구성방법에 따른 제 2종 흡수식 히트펌프의 성능 특성 변화에 관한 연구)

  • Lee, Chang Hyun;Yoon, Jun Seong;Kim, In Gwan;Kwon, Oh Kyung;Cha, Dong An;Bae, Kyung Jin;Kim, Min Su;Park, Chan Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.373-384
    • /
    • 2017
  • The objective of this study was to determine the effect of refrigerant heat exchanger on the performance of type II absorption heat pump performance using numerical analysis. Two heat exchange installation methods were used: solution to refrigerant and waste hot water to refrigerant. These methods were compared to the standard model of hot water flow without using refrigerant heat exchanger. When waste hot waters were bypassed to refrigerant heat exchanger, COP was not affected. However, steam mass generation rates were increased compared to those of the standard model. When solutions were bypassed to the refrigerant heat exchanger, results were different depending on the place where the solution rejoined. COP and steam mass generation rates were lower compared to those when waste heat water was passed to refrigerant heat exchanger. Thus, it is possible to obtain higher steam mass generation rates by using waste water and installing refrigerant heat exchanger.

A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery (20kW급 폐열회수 시스템 공정 설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.

A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템 공정설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.

Optimum Design of Waste Heat Boiler with Water Tube and Three Drum (3드럼 수관식 폐열보일러의 최적설계)

  • Lee, Kwan-Jong;Han, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.992-998
    • /
    • 2006
  • This study is to optimize design parameters for waste heat recovery boiler with water tube and three drum. The design optimization considered here is to find the most economic dimension of the boiler considered which results in a minimum cost in producing a unit amount of steam per given period of operation. For this purpose, optimize design have to determine what are the main parameters of affecting the total cost of producing a unit amount of steam which is comprised of manufacturing cost of the boiler, operating cost of the fan etc.

Experimental Validation on Performance of Waste-heat-recovery Boiler with Water Injection (물분사 폐열회수 보일러의 효용성에 대한 실험적 검증)

  • Jaehun Shin;Taejoon Park;Hyunseok Cho;Junsang Yoo;Seoksu Moon;Changeon Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The waste-heat-recovery boiler with water spray (HR-B/WS) applies the heat exchange between the inlet air and exhaust gas with the water spray into the inlet air. The evaporation of water in the inlet air promotes heat recovery from the exhaust gas so that thermal efficiency can be improved by the enhanced condensing effect. The NOx emission can also be reduced by lowering the flame temperature due to the dilution effect of the water. In this study, the validity of this concept is examined by the practical boiler test performed with a 24 kW condensing boiler under the full load condition according to the water injection amount. The theoretical amount of water injection is calculated under the assumption of full evaporation of the sprayed water, which is calculated as 50 g/min. Since the injected water cannot evaporate fully in the actual system, the maximum water spray amount is set as 100 g/min. The results showed that the water injection can increase the thermal efficiency up to 95.59% and reduce NOx and CO emissions simultaneously to 8.9 ppm and 35 ppm at 0% of O2. Although the heat energy loss increased due to the unevaporated water, the increase in water injection amount caused higher thermal efficiency due to the increased amount of the evaporated water.

Study on the Performance of Fuel Cell Driven Compound Source Heat Pump System to a Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Jeong, Dong-Hwa;Byun, Jae-Ki;Choi, Young-Don;Cho, Sung-Hwan
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.23-35
    • /
    • 2008
  • In the present study, performances of fuel cell driven compound source hybrid heat pump system applied to a large community building are simulated. Among several renewable energy sources, ground, river, sea, and waste water sources are chosen as available alternative energies. The performance and energy cost are varied with the hybrid heat pump sources. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. Th system is driven by fuel cell system instead of the late-night electricity due to the advantages of the low energy cost and waste heat with high temperature.

  • PDF

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.

A study on the steam boiler with high compression waste heat recovery system (고압축 폐열회수장치를 구비한 증기보일러에 관한 연구)

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • An electric steam boiler equipped with a condensate recovery system, which stores the condensate generated after using steam in steam washers, steam cookers, steam irons, and steam cleaners in a condensate tank and supplies compressed air to the condensate tank so that the condensate is recovered to the boiler by the pressure of the compressed air, was studied. In the results of this study, the heat energy balance between the quantity of the heat generated by the non-metallic surface heating element and the quantity of the heat absorbed by the water was good in a range of ${\pm}5%$. In addition, the heat transfer rate increased in proportion to the electric power of the surface heating element heater, the waste heat energy was normally recovered by the recovery of the condensate of the steam boiler equipped with the high compression waste heat recovery system, and the recovery rate of the waste heat exhibited 23%.

A Performance Study on Silica Gel Adsorption Desalination System Utilizing Low Temperature Heat Sources (저온 활용을 위한 실리카겔 흡착식 담수화시스템의 성능연구)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • This work introduces a simple one-reactor adsorption desalination system that harnesses low temperature heat sources (solar energy, waste heat), which has been experimentally studied to elicit the most suitable design parameters and operating conditions. The design process of the system was divided into three parts to reflect the operating principle of desalination technology with application of adsorption processes. First, the evaporator for the vaporization of saline water was designed, then the reactor for the adsorption and release of the steam, followed by the condenser for condensation of the fresh water. The specific water yield is measured experimentally with respect to the time while controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. The present system well demonstrates the applicability of silica gel in relation to adsorption technologies that utilize low temperature heat sources ranging from 60 to $80^{\circ}C$, such as solar energy and waste heat.

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF